Pertemananmanusia dengan ragi roti (Saccharomyces cerevisiae), seperti yang digunakan pada pembuatan bir, anggur dan tentunya, roti sudah berlangsung
Sedangkandalam bidang pangan dikembangkan produk-produk nanoteknologi, rekayasa genetika, kultur jaringan serta DNA rekombinan. Munculnya teknologi DNA rekombinan ini, telah memungkinkan pengembangan kelas baru terapi manusia berdasarkan protein. Tidak hanya itu, pengembangan sistem baru pemberian vaksin dengan menggunakan nanopatch .
Penelitianbioteknologi dengan teknologi DNA rekombinannya masih terbilang langka tidak seperti di Negara-negara maju. Di Amerika Serikat, pemerintahnya sangat mendukung dan mendorong para peniliti ntuk melakukan penelitian bahwa penelitian biologi sel, biologi molekul, dan genetika sel. Mereka menyadari bahwa penelitian dasar merupakan tulang
Bioteknologimodern lahir pada tahun 1970-an dengan munculnya teknologi DNA rekombinan. Istilah DNA rekombinan mungkin sudah pernah didengar tapi samar-samar maknanya. atau pemahaman dasar ilmu biologi diketahui bahwa cetak biru kehidupan DNA menyimpan informasi yang pemanfaatannya dilakukan melalui perubahan informasi itu ke materi baru
3 Peneliti. Seorang peneliti dalam bidang agroteknologi sangat diperlukan untuk mengembangkan berbagai penemuan baru terutama dalam bidang pertanian, sehingga pekerjaan dalam sektor pertanian dapat semakin ringan dijalankan. Gaji yang bisa diperoleh seorang peneliti sekitar Rp. 3.500.000 - Rp. 8.000.000. 4. Surveyor tanah
Vay Tiền Nhanh Ggads. Home - Reproduksi Sel - Hereditas - Struktur Gen - Regulasi Ekspresi Gen –Teknologi DNA - Genom Manusia Teknologi DNA Rekombinan Oleh Aris Tjahjoleksono Jurusan Biologi FMIPA, Institut Pertanian Bogor Kampus IPB Baranangsiang, Jalan Raya Pajajaran. Bogor Tel/Fax 0251 345011. E-mail [email protected] Sejak jaman dahulu kala, nenek moyang kita telah mengenal beraneka ragam mahluk hidup. Beragamnya mahluk hidup memberikan kemungkinan bagi manusia untuk memilih sesuai dengan yang dikehendakinya. Keanekaragaman ini sudah dapat kita lihat pada salah satu jenis mahluk hidup saja, misalnya padi. Kita mengenal berbagai macam padi yang berbeda-beda sifatnya. Ada padi yang umurnya panennya pendek, ada pula yang umur panennya panjang, ada padi yang bijinya wangi dan ada pula yang tidak wangi, ada padi yang batangnya pendek dan ada pula padi yang batangnya panjang, ada padi yang berasnya pulen dan ada pula yang berasnya keras tidak pulen. padikehidupan kita sehari-hari, secara langsung maupun tidak langsung, sebagian dari kita pernah berhubungan dengan hasil penggunaan teknologi DNA Rekombinan. Tidak puas dengan memilih kombinasi sifat yang sudah ada di alam, manusia melakukan usaha untuk membuat kombinasi baru dari sifat-sifat yang diinginkan. Cara klasik yang telah dilakukan oleh para pendahulu kita untuk mendapatkan kombinasi sifat yang diinginkan adalah dengan melakukan persilangan breeding. Para ahli pemuliaan tanaman telah melakukan persilangan-persilangan untuk menghasilkan berbagai jenis ternak dan berbagai jenis tanaman yang memiliki kombinasi sifat-sifat unggul. Untuk dapat menghasilkan ternak atau tanaman unggul dengan cara breeding ini dibutuhkan waktu yang lama dan lahan yang tidak sedikit. Persilangan tersebut menghasilkan organisme hibrid. Organisme hasil persilangan hibrid mempunyai genom yang berbeda dengan kedua tetua sebelumnya. Jadi, persilangan breeding merupakan salah satu cara untuk merubah genom suatu organisme. Halaman 1 Home - Reproduksi Sel - Hereditas - Struktur Gen - Regulasi Ekspresi Gen –Teknologi DNA - Genom Manusia Mungkin sebagian dari anda bisa melihat tanaman jagung hibrida. Berbagai jagung hibrida telah diproduksi di berbagai wilayah negeri kita. Mungkin juga sebagian dari anda dapat melihat tanaman anggrek yang bunganya berwarna warni. Sebagian dari tanaman anggrek tersebut merupakan hasil persilangan antar varietas dalam satu spesies, atau hasil persilangan antar spesies, dan bahkan mungkin merupakan hasil persilangan antar genus. Dengan telah ditemukannya DNA sebagai bahan gen, manusiapun berupaya untuk mendapatkan kombinasi sifat-sifat baru suatu mahluk hidup dengan cara melakukan perubahan langsung pada DNA genomnya. Usaha untuk mengubah DNA genom secara langsung ini disebut dengan istilah Rekayasa Genetika atau Genetic Engineering. Dalam upaya melakukan rekayasa genetika, manusia menggunakan teknologi DNA rekombinan. Apakah Teknologi DNA Rekombinan itu ? Teknologi DNA Rekombinan merupakan kumpulan teknik atau metoda yang digunakan untuk mengkombinasikan gen-gen di dalam tabung reaksi. Teknik-teknik tersebut meliputi - Teknik untuk mengisolasi DNA. - Teknik untuk memotong DNA. - Teknik untuk menggabung atau menyambung DNA. - Teknik untuk memasukkan DNA ke dalam sel hidup. Kumpulan teknik-teknik atau metoda-metoda yang telah dikembangkan oleh para ilmuwan telah mungkinkan bagi kita untuk mengisolasi DNA dari berbagai organisme, menggabungkan DNA yang berasal dari organisme yang berbeda sehingga terbentuk kombinasi DNA DNA rekombinan, memasukkan DNA rekombinan ke dalam sel organisme prokariot maupun eukariot hingga DNA rekombinan tersebut dapat berepilkasi dan bahkan dapat diekspresikan. Teknologi DNA Rekombinan telah memberikan banyak manfaat bagi perkembangan ilmu pengetahuan maupun bagi kehidupam manusia seharihari. Beberapa jenis obat-obatan, vaksin, bahan pangan, bahan pakaian dan lainnya telah diproduksi dengan memanfaatkan teknologi DNA Rekombinan. Halaman 2 Home - Reproduksi Sel - Hereditas - Struktur Gen - Regulasi Ekspresi Gen –Teknologi DNA - Genom Manusia Dalam kehidupan kita sehari-hari, secara langsung maupun tidak langsung, sebagian dari kita pernah berhubungan dengan hasil penggunaan teknologi DNA Rekombinan. Contoh insulin telah digunakan untuk mengobati penyakit diabetes. Penyakit diabetes pada manusia diobati dengan insulin manusia. Bagaimanakah kita dapat memperoleh insulin manusia ini ?. Apakah untuk mengobati orang yang sakit diabetes ini kita harus mengorbankan orang yang sehat untuk diekstrak insulinnya ?. Tentu saja tidak. Saat ini insulin manusia telah berhasil diproduksi secara masal dengan menggunakan bakteri. Kemampuan bakteri untuk memproduksi insulin manusia ini adalah karena manusia telah berhasil memasukkan dan mengintegrasikan gen yang menyandikan insulin manusia kedalam genom bakteri. Contoh lainnya adalah kapas transgenik. Kapas transgenik pernah ramai dibicarakan di media masa kita pada awal abad 21 ini. Salah satu kapas transgenik adalah kapas-bt. Tanaman kapas-bt telah mengandung gen penyandi toksin yang berasal dari bakteri Bacillus turingiensis Bt. Toksin tersebut dapat membunuh hama kapas sehingga kapas-bt tersebut tahan terhadap serangan hama. Tanaman kapas ini tahan terhadap serangan hama ulat karena tanaman ini menghasilkan toksin yang dapat membunuh hamanya ulat. Toksin tersebut disandikan oleh gen yang berasal dari bakteri Bacillus turingiensis Genom tanaman kapas ini mengandung gen yang berasal dari bakteri Bacillus turingiensis. Oleh karena itu, tanaman kapas ini seringkali disebut sebagai kapas-Bt Bt = Bacillus turingiensis. Kapas-bt merupakan salah satu contoh organisme transgenik. Organisme transgenik adalah organisme yang mengandung gen yang berasal dari jenis organisme lainnya. Oleh karena tanaman kapas ini mengandung gen yang asalnya dari organisme lainnya, maka kapas ini secara umum disebut tanaman kapas transgenik. Bakteri penghasil insulin dan tanaman kapas-bt tersebut merupakan sebagian dari hasil rekayasa yang dilakukan manusia terhadap makhluk hidup dengan menggunakan teknologi DNA rekombinan. Halaman 3 Home - Reproduksi Sel - Hereditas - Struktur Gen - Regulasi Ekspresi Gen –Teknologi DNA - Genom Manusia Teknologi DNA rekombinan berdasarkan pada mekanisme yang terdapat pada bakteri. Hasil Percobaan Lederberg dan Tatum 1946 menunjukkan bahwa bakteri mempunyai mekanisme seksual. Mekanisme seksual pada bakteri ini menyebabkan terbentuknya kombinasi gen-gen yang berasal dari dua sel yang berbeda. Mekanisme seksual pada bakteri ini merupakan pertukaran DNA atau gen dari satu sel ke sel lainnya. Jadi mekanisme seksual pada bakteri ini tidak bersifat reproduktif tidak menghasilkan anak atau zuriat. Transfer DNA atau perpindahan DNA ke dalam bakteri dapat melalui tiga cara yaitu konjugasi, transformasi, dan transduksi. DNA yang masuk ke dalam sel bakteri selanjutnya dapat berintegrasi dengan DNA atau kromosom bakteri sehingga terbentuk kromosom rekombinan. Konjugasi merupakan perpindahan DNA dari satu sel sel donor ke dalam sel bakteri lainnya sel resipien melalui kontak fisik antara kedua sel. Sel donor sel jantan memasukkan sebagian DNA-nya ke dalam sel resipien sel betina. Transfer DNA ini melalui pili seks yang dimiliki oleh sel jantan. Sel betina tidak memiliki pili seks. DNA dari sel jantan berpindah ke dalam sel betina secara replikatif. Oleh karena itu, setelah proses konjugasi selesai, sel jantan tidak kehilangan DNA. Setelah konjugasi selesai kedua sel berpisah kembali dan jumlah sel tidak bertambah setelah konjugasi tidak dihasilkan anak sel. Oleh karena itu, proses konjugasi ini disebut juga sebagai proses atau mekanisme seksual yang tidak reproduktif. Transformasi merupakan pengambilan DNA oleh bakteri dari lingkungan di sekelilingnya. DNA yang berada di sekitar bakteri DNA asing dapat berupa potongan DNA atau fragmen DNA yang berasal dari sel bakteri lainnya atau dari organisme lainnya. Masuknya DNA dari lingkungan ke dalam sel bakteri ini dapat terjadi secara alami. Fenomena transformasi ini telah diamati oleh Griffith 1928 dan kelompok Avery 1944. Griffith 1928 telah menemukan bahwa strain bakteri yang tidak virulen strain yang penampilan koloninya kasar dapat berubah sifatnya menjadi strain yang virulen penampilan koloninya halus. Perubahan sifat ini disebabkan karena strain yang tidak virulen strain kasar dicampur dengan sel-sel bakteri strain virulen strain halus yang telah dimatikan. Halaman 4 Home - Reproduksi Sel - Hereditas - Struktur Gen - Regulasi Ekspresi Gen –Teknologi DNA - Genom Manusia Avery, McCleod, dan McCarty 1944 menemukan bahwa perubahan sifat atau transformasi dari bakteri kasar menjadi menjadi bakteri halus atau perubahan dari tidak virulen menjadi virulen tersebut disebabkan oleh adanya DNA dari sel bakteri halus yang masuk ke dalam sel bakteri kasar. Berdasarkan pada mekanisme transformasi alami ini, kita dapat melakukan transformasi bakteri secara buatan. Dengan perlakuan tertentu, kita dapat memasukkan potongan DNA ke dalam sel bakteri. Prinsipnya sederhana yaitu mencampurkan sel-sel bakteri hidup dengan potongan DNA tertentu di dalam tabung reaksi. Beberapa waktu kemudian kita dapat menyeleksi selsel bakteri yang sudah mengandung potongan DNA tertentu tersebut. Transduksi adalah cara pemindahan DNA dari satu sel ke dalam sel lainnya melalui perantaraan fage. Beberapa jenis virus berkembang biak di dalam sel bakteri. Virus-virus yang inangnya adalah bakteri seringkali disebut bakteriofage atau fage. Pada waktu fage menginfeksi bakteri, fage memasukkan DNA-nya ke dalam bakteri. DNA fage ini kemudian bereplikasi di dalam sel bakteri atau berintegrasi dengan kromosom bakteri ingat siklus hidup fage siklus litik dan siklus lisogenik. Pada waktu DNA fage dikemas di dalam pembungkusnya untuk membentuk partikel fage-fage baru, DNA fage tersebut dapat membawa sebagian dari DNA bakteri yang telah menjadi inangnya. Selanjutnya bila fage menginfeksi bakteri lainnya, maka fage akan memasukkan DNA-nya yang mengandung sebagian dari DNA bakteri inangnya yang sebelumnya. Dengan demikian, fage tidak hanya memasukkan DNA-nya sendiri kedalam sel bakteri yang diserangnya tetapi juga memasukkan DNA dari sel bakteri lainnya yang ikut terbawa pada DNA fage. Jadi, secara alami fage memindahkan DNA dari satu sel bakteri ke sel bakteri lainnya. Perangkat yang digunakan dalam teknologi DNA rekombinan adalah perangkat-perangkat yang ada pada bakteri. Perangkat tersebut antara lain adalah enzim restriksi, enzim DNA ligase, plasmid, transposon, pustaka genom, enzim transkripsi balik, pelacak DNA/RNA. Halaman 5 Home - Reproduksi Sel - Hereditas - Struktur Gen - Regulasi Ekspresi Gen –Teknologi DNA - Genom Manusia Enzim restriksi digunakan untuk memotong DNA. Pada tahun 1960, Werner Arber & Hamilton Smith menemukan enzim dari mikroba yang dapat memotong DNA utas ganda. Enzim tersebut sekarang dikenal dengan nama enzim restriksi atau endonuklease restriksi. Enzim tersebut mengenal dan memotong DNA pada sekuens spesifik yang panjangnya 4 sampai dengan 6 pasang basa. Enzim tersebut sekarang dikenal dengan nama enzim restriksi atau enzim endonuklease restriksi. Secara alami, bakteri menghasilkan enzim restriksi untuk menghancurkan DNA fage yang menginfeksinya yang masuk ke dalam sel bakteri. Sampai saat ini sudah banyak jenis enzim restriksi yang telah ditemukan dan diisolasi dari berbagai spesies bakteri. Nama setiap enzim restriksi diawali dengan tiga huruf yang menyatakan nama bakteri yang menghasilkan enzim tersebut. Setiap enzim restriksi mengenal sekuens dan situs pemotongan yang khas. Enzim restriksi memotong DNA bukan pada sembarang tempat, tetapi memotong DNA pada bagian tertentu. Bagian pada DNA yang dikenai aksi pemotongan oleh enzim restriksi ini dinamakan sekuens pengenal. Suatu sekuens pengenal adalah urutan nukleotida urutan basa tertentu yang dikenal oleh enzim restriksi sebagai tempat atau bagian yang akan dipotongnya. Salah satu contoh enzim restriksi ini adalah enzim EcoRI yang telah diisolasi pertama kali oleh Herbert Boyer pada tahun 1969 dari bakteri Escherichia coli. Enzim EcoRI memotong DNA pada bagian yang urutan basanya adalah GAATTC sekuens pengenal bagi EcoRI adalah GAATTC. Di dalam sekuens pengenal tersebut, enzim EcoRI memotongnya tidak pada sembarang situs tetapi hanya memotong pada bagian atau situs antara G dan A. Pada DNA utas ganda, sekuens GAATTC ini akan berpasangan dengan sekuens yang sama tetapi berlawanan arah. Enzim EcoRI ini memotong setiap utas dari utas ganda tersebut pada bagian antara G dan A. Sebagai akibatnya, potongan-potongan atau fragmen-fragmen DNA utas ganda yang dihasilkan akan memiliki ujung berutas tunggal. Ujung seperi ini yang dikenal dengan istilah sticky ends atau cohesive ends. Halaman 6 Home - Reproduksi Sel - Hereditas - Struktur Gen - Regulasi Ekspresi Gen –Teknologi DNA - Genom Manusia Enzim DNA ligase digunakan untuk menyambung DNA. Pada tahun 1972, David Jackson, Robert Simon, dan Paul Berg melaporkan bahwa mereka berhasil membuat molekul DNA rekombinan. Mereka berhasil menggabungkan fragmen-fragmen DNA dengan cara memasangkan anneal ujung sticky ends dari satu fragmen dengan ujung sticky ends fragmen lainnya, kemudian menyambungkan kedua ujung fragmen-fragmen tersebut secara kovalen dengan menggunakan enzim DNA ligase. Keberhasilan membuat DNA rekombinan ini terjadi tidak lama setelah enzim restriksi ditemukan dan diisolasi pertama kali dari oleh Herbert Boyer yaitu pada tahun 1969 . Plasmid digunakan sebagai vektor untuk mengklonkan gen atau mengklonkan fragmen DNA atau mengubah sifat bakteri. Pada umumnya bakteri mempunyai satu kromosom. Kromosom bakteri berupa DNA sirkular atau DNA yang berbentuk lingkaran. Disamping memiliki satu kromosom, berbagai jenis bakteri juga memiliki DNA sirkular lainnya yang ukurannya jauh lebih kecil dari pada DNA kromosomnya. DNA sirkuler selain kromosom yang terdapat pada bakteri dinamakan plasmid. Jadi, plasmid merupakan DNA bakteri yang terpisah dari kromosom bakteri. Plasmid dapat bereplikasi sendiri. Plasmid juga mengandung berbagai gen. Jenis, jumlah jenis, dan jumlah tiap jenis copy plasmid bervariasi antar sel. Bahkan antar sel dalam satu spesies bakteri. Plasmid mulai digunakan sebagai vektor untuk mengklonkan gen tidak lama setelah David Jackson, Robert Simon, dan Paul Berg berhasil membuat molekul DNA rekombinan itu pada tahun 1972. Dalam hal ini, plasmid digunakan sebagai pembawa fragmen DNA asing. Dengan kata lain, plasmid dikombinasikan dengan DNA asing. Plasmid rekombinan yang pertama kali berhasil bereplikasi di dalam sel bakteri adalah plasmid pSC101 yang telah dikonstruksi oleh Stanley Cohen dan Herbert Boyer SC=Stanley Cohen. Salah satu contoh plasmid yang telah lama digunakan sebagai vektor untuk mengklon gen adalah plasmid pBR322. Plasmid pBR322 ini mengandung gen penyandi resistensi terhadap ampisilin dan tetrasiklin. Pada gambar disamping ditujukkan adanya berbagai situs yang dapat dipotong oleh enzim restriksi. Halaman 7 Home - Reproduksi Sel - Hereditas - Struktur Gen - Regulasi Ekspresi Gen –Teknologi DNA - Genom Manusia Adanya gen resistensi terhadap antibiotik yang didalamnya mengandung situs enzim restriksi akan memberikan kemudahan dalam menyeleksi plamid rekombinan atau memudahkan dalam menyeleksi klon bakteri yang telah membawa plasmid rekombinan. Akan lebih memudahkan lagi dengan adanya enzim yang hanya memotong pada bagian gen resistensi terhadap antibiotik. Misalnya, enzim PstI yang hanya akan memotong pBR322 pada bagian gen resistensi terhadap ampisilin gen ApR. Dari beberapa perangkat diatas enzim restriksi, enzim DNA ligase, dan plasmid, telah memungkinkan bagi kita untuk mengklonkan gen atau fragmen DNA. Dalam hal ini, kita dapat membuat plasmid rekombinan plasmid yang mengandung fragmen DNA asing di dalam tabung reaksi. Bila dikombinasikan dengan salah satu cara bakteri memindahkan DNA, yaitu transformasi, kita dapat memasukkan plasmid rekombinan tersebut ke dalam sel bakteri. Tahapan dalam mengklonkan gen meliputi pemotongan plasmid, menyisipkan gen atau fragmen DNA, memasukkan DNA kedalam sel bakteri trasformasi, seleksi klon bakteri yang benar yaitu bakteri yang mengandung plasmid rekombinan. Pemotongan plasmid. Plasmid pBR322 dipotong di dalam tabung reaksi menggunakan enzim restriksi PstI maka pBR322 akan terpotong atau terbuka pada bagian gen ApR. Menyisipkan gen atau fragmen DNA. Bila pBR322 yang sudah terbuka lingkarannya dicampur dengan potongan DNA asing dan kemudian ditambahkan enzim DNA ligase, maka kemungkinan hasilnya adalah berupa campuran yang berisi 1 plasmid pBR322 yang tersambung kembali atau membentuk lingkaran lagi seperti semula, 2 plasmid rekombinan yaitu pBR322 yang telah disisipi oleh DNA asing. Halaman 8 Home - Reproduksi Sel - Hereditas - Struktur Gen - Regulasi Ekspresi Gen –Teknologi DNA - Genom Manusia Memasukkan DNA kedalam sel bakteri trasformasi. Campuran kedua bentuk plasmid ini kemudian dicampurkan dengan kumpulan sel-sel bakteri hidup yang tidak mempunyai plasmid. Kemungkinan hasilnya berupa campuran yang berisi 1 sel bakteri yang mendapatkan plasmid pBR322 tanpa sisipan, 2 sel yang mendapatkan plasmid rekombinan pBR322 yang telah disisipi DNA asing, 3 sel bakteri yang tidak mengandung tidak dimasuki plasmid. Seleksi klon bakteri yang benar yaitu bakteri yang mengandung plasmid rekombinan. Dalam contoh ini, seleksi dilakukan dengan menggunakan media tumbuh bakteri yang mengandung antibiotik. Sel yang yang tidak mengandung pasmid tidak akan tumbuh pada media yang mengandung ampisilin maupun tetrasiklin. Sel bakteri yang mengandung plasmid tanpa sisipan pBR322 semula tumbuh pada media yang mengandung tetrasiklin maupun ampisilin. Sel bakteri yang mengandung plasmid rekombinan tumbuh pada media yang mengandung tetrasiklin tetapi tidak tumbuh pada media yang mengandung ampisilin karena gen ApR disisipi DNA asing sehingga sehingga tidak berfungsi. Dalam teknis pelaksanaannya, cairan suspensi dalam pekerjaan transformasi campuran antara bakteri, plasmid, dan DNA asing yang telah diperlakukan dalam rangka transformasi disebarkan pada media yang mengandung tetasiklin. Koloni bakteri yang tumbuh adalah koloni Sel1 dan koloni Sel2 koloni adalah kumpulan sel yang sama yang semula berasal dari satu sel. Sel bakteri yang tidak mengandung plasmid tidak mampu tumbuh. Masing-masing koloni yang tumbuh pada media+tetrasiklin kemudian dipindahkan pada media+ampisilin. Koloni yang tidak tumbuh pada media+ampisilin adalah koloni yang diinginkan sel-sel bakterinya mengandung plasmid rekombinan. Contoh plasmid lainnya yang telah lama digunakan sebagai vektor untuk mengklonkan gen adalah plasmid pUC118 dan pUC119. Plasmid ini merupakan pengembangan dari pBR322. Plasmid pUC118 dan pUC119 mengandung gen lacZ yang menyandikan enzim b-galactosidase. Pada lacZ terdapat daerah yang disebut daerah polikloning. Halaman 9 Home - Reproduksi Sel - Hereditas - Struktur Gen - Regulasi Ekspresi Gen –Teknologi DNA - Genom Manusia Pada daerah polikloning ini terdapat banyak situs restriksi dari berbagai enzim restriksi. Dalam hal ini, kita dapat menggunakan berbagai enzim restriksi untuk memotong pUC118 atau pUC119 pada bagian lacZ. Dengan demikian kita dapat menyisipkan DNA asing pada bagian lacZ. Bila gen lacZ disisipi oleh DNA asing maka gen lacZ tersebut tidak berfungsi tidak menghasilkan β-galactosidase. Bila kita menggunakan pUC188 atau pUC119 sebagai plasmid vektor, maka koloni yang membawa plasmid rekombinan dapat dideteksi dengan menggunakan Xgal 5-bromo-4-chloroindolyl-β-D-galactosida. Enzim β-galactosidase akan memecah Xgal menjadi galatosa dan 5-bromo-4-chloroindigo berwarna biru. Koloni bakteri yang mengandung plasmid pUC118 atau pUC119 akan berwarna biru bila ditumbuhkan pada media yang mengandung Xgal. Hal ini karena l bakteri menghasilkan enzim β-galactosidase. Oleh karena medianya mengandung Xgal maka enzim β-galactosidase memecahkan Xgal sehingga dihasilkan 5-bromo-4-chloroindigo yang berwarna biru. Koloni bakteri akan berwarna putih bila pUC118 atau pUC119 telah disisipi DNA asing pada bagian lacZ. Dalam hal ini sel bakteri tidak menghasilkan enzim β-galactosidase karena gen lacZ. Gen lacZ tidak berfungsi karena disisipi oleh DNA asing. Transposon digunakan sebagai alat untuk melakukan mutagenesis dan untuk menyisipkan penanda. Keberhasilan para ahli dalam melakukan rekayasa genetika terhadap berbagai organisme tidak lepas dari peranan transposon. Transposon atau elemen loncat mula-mula ditemukan oleh Barbara McClintock. Untuk sampai pada penemuan tentang adanya transposon, Barbara McClintock mempelajari penyebab terjadinya variasi warna biji jagung. Seperti yang pernah anda pelajari sebelumnya bahwa biji jagung terbentuk sebagai hasil dari pembuahan ganda dua pembuahan. Satu pembuahan menghasilkan zigot yang kemudian berkembang menjadi embrio yang tersimpan dalam biji jagung. Satu pembuahan lainnya menghasilkan endosperma. Endosperma inilah yang kita lihat penampilannya yang nampak sebagai biji jagung. Endosperma ini merupakan bagian terbesar dari biji dan merupakan bagian penyimpan makanan. Endosperma inilah yang kita gunakan kandungan karbohidratnya untuk makanan kita maupun makanan ternak. Halaman 10 Home - Reproduksi Sel - Hereditas - Struktur Gen - Regulasi Ekspresi Gen –Teknologi DNA - Genom Manusia Oleh karena endosperma ini awalnya berasal dari satu sel sel triploid yang merupakan hasil peleburan antara satu initi sel sperma dengan dua inti sel kutub yang kemudian membelah secara mitosis. Oleh karena itu seharusnya endosperma tersebut merupakan kumpulan sel yang sama sifatnya. Bila kumpulan sel endosperma warnanya sama maka setiap titik pada permukaan setiap biji jagung itu warnanya sama atau seragam. Bila berwarna putih, maka seluruh permukaan biji jagung endospermanya berwarna putih. Atau bila kuning, maka seluruh permukaan biji jagung endospermanya berwarna kuning. Oleh karena itu, anda apat menemukan di pasar atau di penjual sayur keliling, jagung yang setiap bijinya berwarna kuning atau putih. Barbara McClintock mempelajari mengapa ada biji jagung yang warnanya tidak seragam sehingga nampak kuning dengan bercak-bercak coklat. Pola bercaknya tidak teratur. Biji yang satu dengan biji lainnya juga berbeda pola bercaknya. Dengan melakukan persilangan-persilangan antar tanaman jagung yang berbeda warna bijinya, akhirnya Barbara McClintock menemukan bahwa ketidak-seragaman atau variasi warna biji jagung disebabkan oleh adanya bagian dari kromosom yang berpindah-pindah. Bagian dari kromosom tersebut pindah dari satu tempat ke tempat lain pada kromosom yang sama atau pindah dari satu kromosom ke kromosom lainnya. Bagian dari kromosom yang dapat berpindah tempat tersebut dinamakan transposon. Jadi, transposon adalah DNA yang dengan sendirinya dapat berpindah-pindah tempat atau berpindah posisinya. Transposon dapat berpindah-pindah tempatnya pada satu molekul DNA atau pada satu krosom. Transposon juga dapat pindah dari satu molekul DNA ke molekul DNA lainnya atau pindah dari satu kromosom ke kromosom lainnya. Karena memiliki kemampuan untuk berpindah tempat dengan sendirinya maka sering kali transposon disebut juga dengan nama elemen loncat. Transposon dapat ditemukan pada berbagai jenis tanaman, cendawan, dan bakteri. Jenis transposon bermacam-macam berdasarkan ukuran atau panjangnya, gen-gen yang dikandungnya, dan cara berpindahnya. Transposon yang paling sederhana hanya mengandung gen penyandi enzim tranposom transposase. Enzim transposon ini dibutuhkan untuk melepaskan diri dari tempat semula dan menyisip ke tempat lain. Transposon yang lebih kompleks dapat mengandung satu atau beberapa gen tertentu misalnya gen-gen penyandi resistensi terhadap antibiotik. Halaman 11 Home - Reproduksi Sel - Hereditas - Struktur Gen - Regulasi Ekspresi Gen –Teknologi DNA - Genom Manusia Bila transposon menyisip pada suatu gen tertentu maka gen tertentu tersebut akan terganggu fungsinya. Oleh karena itu, transposon sering digunakan oleh para peneliti untuk melakukan mutagenesis melakukan proses mutasi sehingga dihasilkan mutan. Misalnya, untuk mempelajari gen yang menyebabkan warna hijau, seorang peneliti dapat menggunakan transposon untuk mendapatkan mutan yang tidak berwarna hijau. Mutan menjadi tidak hijau karena gen penentu warna hijau disisipi oleh transposon. Dengan melacak posisi dimana transposon berada maka peneliti tersebut dapat mempelajari gen yang menentukan warna hijau karena gen tersebut telah disisipi transposon gen warna hijau bersatu bersama transposon. Transposon juga dapat digunakan untuk menandai suatu sel. Transposon yang membawa gen resistensi terhadap antibiotik sering digunakan oleh para peneliti sebagai penanda. Kita dapat menandai suatu strain bakteri dengan menyisipkan gen resistensi terhadap suatu antibiotik. Untuk menyisipkan gen resistensi terhadap antibiotik, kita dapat menggunakan transposon. Misalnya, kita dapat menandai strain bakteri-B dengan menggunakan transposon Tn5-kanR transposon Tn5 yang mengandung gen kanR. Gen kanR menyandikan resistensi terhadap antibiotik kanamisin. Kita dapat menggunakan Tn5-kanR untuk menandai agar bakteri-B menjadi resisten terhadap kanamisin. Bila Tn5 masuk ke dalam sel bakteri-B maka Tn5 beserta gen kanR yang dikandungnya akan menyisip ke dalam DNA kromosom bakteri-B. Dengan demikian bakteri-B yang semula tidak tahan terhadap kanamisin, setelah disisipi Tn5 menjadi tahan terhadap kanamisin. Selanjutnya bila sel bakteri-B yang sudah ditandai tersebut tercampur dengan sel bakteri lainnya, maka kita masih dapat memilihnya atau menyeleksinya yaitu menggunakan media yang mengandung kanamisin. Dalam hal ini, bakteri lain tidak tumbuh, sedangkan bakteri-B yang sudah ditandai dapat tumbuh pada media dengan antibiotik kanamisin tersebut. Transposon dapat digunakan untuk menandai sel, menandai suatu gen, melacak keberadaan suatu gen, menemukan letak suatu gen di dalam kromosom. Jadi, transposon merupakan salah satu perangkat penting di dalam teknologi DNA rekombinan. Home - Reproduksi Sel - Hereditas - Struktur Gen - Regulasi Ekspresi Gen –Teknologi DNA - Genom Manusia Halaman 12 Pustaka Genom digunakan untuk menyimpan gen atau fragmen DNA yang telah diklonkan. Salah satu cara yang digunakan untuk mempelajari genom suatu organisme adalah dengan menggunakan pendekatan Shot-Gun. Dengan pendekatan ini, DNA total dipotong menggunakan enzim restriksi. Oleh karena jumlah potongannya sangat banyak maka sangatlah sulit untuk mempelajari setiap potongan tersebut dalam waktu yang bersamaan. Oleh karena itu, potongan-potongan tersebut perlu untuk disimpan lebih dulu sebelum mendapatkan gilirannya untuk dipelajari. Untuk menyimpan potongan atau fragmen DNA genom digunakan Pustaka Genom. Pustaka genom merupakan koleksi berbagai klon bakteri yang berisi plasmid rekombinan maupun koleksi klon fage yang mengandung DNA rekombinan. Di dalam pustaka genom ini, setiap plasmid rekombinan atau setiap DNA fage rekombinan membawa salah satu potongan atau fragmen DNA genom yang dipelajari. Setiap klon bakteri membawa satu plasmid rekombinan sedangkan setiap klon fage membawa satu DNA fage rekombinan. Kumpulan klon-klon bakteri yang membawa plasmid rekombinan ini dinamakan Pustaka Plasmid, sedangkan kumpulan fage rekombinan dinamakan Pustaka Fage. Jadi Pustaka Genom dapat berupa Pustaka Plasmid dan/atau Pustaka Fage. Enzim traskripsi balik digunakan untuk membuat DNA berdasarkan RNA. Tidak lama setelah penemuan enzim restriksi, Howard Temin dan David Baltimore secara terpisah pada tahun 1970 menemukan enzim transkripsi-balik reverse-transcriptase yang digunakan oleh retrovirus untuk membuat copy DNA berdasarkan RNA-nya. Enzim transkripsi-balik ini kemudian digunakan untuk mengkonstruksi copy DNA yang disebut cDNA complementary DNA dengan menggunakan RNA sebagai cetakannya. Dengan demikian gen atau bagian dari gen dapat disintesis berdasarkan mRNA. Proses sintesis DNA dengan cara ini merupakan kebalikan dari pada proses transkripsi. Oleh karena itu dinamakan transkripsi balik. Halaman 13 Home - Reproduksi Sel - Hereditas - Struktur Gen - Regulasi Ekspresi Gen –Teknologi DNA - Genom Manusia Saat ini, enzim transkriptase-balik sudah diproduksi secara komersial. Ketersediaan enzim transkriptase-balik ini telah memberikan kemudahan bagi para peneliti untuk mempelajari gen yang bertanggung-jawab terhadap sifat-sifat tertentu. Tanpa enzim transkriptase-balik, pekerjaan mencari gen umumnya dimulai dari mengisolasi DNA total genom, kemudian memotongmotongnya menjadi ratusan ribu potongan yang kemudian diteruskan dengan mempelajari setiap potongan. Cara ini tentu saja membutuhkan lebih banyak tenaga dan memakan waktu yang lebih lama. Dengan ketersediaan enzim transkritase-balik, pekerjaan mencari gen tidak lagi harus dimulai dengan mengisolasi DNA genom total tetapi dimulai dengan mengisolasi mRNA. Tahapan utama dalam pembuatan DNA menggunakan transkriptase balik ini adalah sebagai berikut 1 DNA gen eukariot terdiri atas intron dan exon, pada wakttu transkripsi semua bagian tersebut diterjemahkan oleh enzim transkriptase menjadi RNA. 2 Dalam proses pasca-transkripsi, intron dibuang sehingga mRNA tidak lagi mengandung intron. 3 Bila kita berhasil mengisolasi mRNA dari sel, maka kita dapat membuat DNA gen yaitu dengan menambahkan enzim transkriptase-balik. 4 Enzim transkriptase-balik mensisntesis DNA dengan menggunakan mRNA tersebut sebagai cetakannya. Hasilnya berupa DNA utas tunggal. 5 Setelah dihasilkan DNA utas tunggal, DNA polimerase akan mensintesis utas DNA pasangannya sehingga dihasilkan gen yang berupa DNA utas ganda. DNA gen hasil dari transkripsi balik ini tidak mengandung intron. Pelacak DNA / RNA digunakan untuk mendeteksi gen atau fragmen DNA yang diinginkan atau untuk mendeteksi klon yang benar. Edwin M Southern, pada tahun 1975, telah mempublikasikan prosedur untuk mendeteksi fragmen DNA yang spesifik. Prosedur ini dikenal dengan nama teknik Southern Blotting. Pelacak atau probe yang digunakan untuk mengidentifikasi fragmen DNA yang spesifik tersebut merupakan asam nukleat pendek, berutas tunggal RNA atau DNA berutas tunggal dan diberi label radioaktif atau non radioaktif. Halaman 14 Home - Reproduksi Sel - Hereditas - Struktur Gen - Regulasi Ekspresi Gen –Teknologi DNA - Genom Manusia Bila dicampurkan dengan fragmen-fragmen DNA, rangkaian basa yang ada pada probe tersebut akan berpasangan dengan rangkaian basa komplementer yang ada pada fragmen DNA. Dengan kata lain bahwa fragmen DNA yang akan tertempeli probe adalah fragmen DNA yang mengandung urutan basa yang komplementer dengan urutan basa pada probe. Dengan teknik ini, gen tertentu dapat diisolasi dari campuran fragmen DNA yang kompleks. Langkah awalnya adalah memisahkan fragmenfragmen DNA dengan cara elektroforesis pada gel agarosa. Fragmen DNA yang telah terpisah di dalam gel agarose, selanjutnya didenaturasi dibuat menjadi utas tunggal. Fragmen-fragmen DNA tersebut kemudian ditransfer pada filter nitroselulosa atau membran nilon sehingga setiap fragmen DNA menempel kuat pada membran dan posisinya yang sama dengan posisi pada gel agarosa. Kemudian membran atau filter direndam dalam cairan yang mengandung probe. Bila probe-nya adalah probe radioaktif, filter selanjutnya ditempelkan atau diekspose pada lembaran film X-ray untuk mengetahui posisi fragmen yang tertempeli probe pada filter atau membran. Probe non-radioaktif juga telah cukup lama dikembangkan. Probe dapat dikaitkan dengan enzim, misalnya peroksidase sehingga menjadi probeenzim. Deteksinya dapat dilakukan dengan menggunakan substrat chemiluminescent yang signalnya ditangkap oleh lembaran film x-ray. Probe juga dapat dikaitkan dengan vitamin misalnya biotin, sedangkan deteksinya menggunakan enzim misalnya alkalin phosphatase. Signalnya akan nampak langsung pada filter atau membran berupa pita-pita yang berwarna biru/ungu bila pita-pita tersebut merupakan fragmen DNA yang berikatan dengan probe. Dengan prinsip yang sama yaitu perpasangan basa-basa probe dengan basa-basa DNA target yang komplementer, probe asam nukleat ini juga dapat digunakan untuk mendeteksi klon yang benar. Klon DNA gen atau fragmen DNA dapat dibuat melalui pembuatan plasmid rekombinan di dalam tabung reaksi mencampurkan plasmid asal dan fragmen DNA. Kemungkinan yang dapat ditemui di dalam tabung reaksi tersebut adalah plasmid tanpa mengandung fragmen DNA plasmid asal dan plasmid rekombinan plasmid yang mengandung fragmen DNA. Halaman 15 Home - Reproduksi Sel - Hereditas - Struktur Gen - Regulasi Ekspresi Gen –Teknologi DNA - Genom Manusia Tahap berikutnya adalah memasukkan plasmid ke dalam sel bakteri dengan cara mencampurkan campuran plasmid tersebut dengan bakteri inangnya. Kemungkinan yang dapat terjadi dalam hal ini adalah ada sel bakteri yang tidak berisi plasmid, ada sel yang berisi plasmid asal, dan ada sel yang berisi plasmid rekombinan. Teknik Southern Blotting tersebut di atas dapat digunakan untuk mendeteksi klon yang benar klon bakteri yang mengandung plasmid rekombinan, yaitu dengan menggunakan probe yang spesifik untuk fragmen DNA yang diklonkan urutan basanya komplemen dengan urutan basa pada fragmen yang diklonkan. Berdasarkan mekanisme bakteri, perangkat bakteri, dan beberapa teknik diatas, DNA rekombinan dapat dibuat paling tidak melalui tiga pendekatan, yaitu 1 Mengestraksi DNA total suatu organisme, memotong DNA total menjadi fragmen-fragmen, memilih fragmen yang dikehendaki, mengklonkan fragmen yang telah terpilih. 2 Mengestraksi DNA total suatu organisme, memotong DNA total menjadi fragmen-fragmen, mengklonkan semua fragmen DNA pada vektor yang sesuai, menguji setiap klon untuk mendapatkan gen yang diinginkan. 3 Sintesis gen atau fragmen DNA yang diinginkan secara langsung dan mengklonkan gen atau fragmen DNA hasil sintesis. Halaman 16
DNA rekombinan, atau rDNA, adalah DNA yang dibentuk dengan menggabungkan DNA dari sumber yang berbeda melalui proses yang disebut rekombinasi genetik. Seringkali, sumbernya berasal dari organisme yang berbeda. Secara umum, DNA dari organisme yang berbeda memiliki struktur kimia umum yang sama. Untuk alasan ini, dimungkinkan untuk membuat DNA dari sumber yang berbeda dengan menggabungkan untaian. Takeaways Kunci Teknologi DNA rekombinan menggabungkan DNA dari sumber yang berbeda untuk membuat urutan DNA yang berbeda. Teknologi DNA rekombinan digunakan dalam berbagai aplikasi mulai dari produksi vaksin hingga produksi tanaman rekayasa genetika. Seiring kemajuan teknologi DNA rekombinan, presisi teknik harus diimbangi dengan pertimbangan etis. DNA rekombinan memiliki banyak aplikasi dalam sains dan kedokteran. Salah satu penggunaan DNA rekombinan yang terkenal adalah dalam produksi insulin . Sebelum munculnya teknologi ini, insulin sebagian besar berasal dari hewan. Insulin sekarang dapat diproduksi lebih efisien dengan menggunakan organisme seperti E. coli dan ragi. Dengan memasukkan gen insulin dari manusia ke dalam organisme ini, insulin dapat diproduksi. Proses Rekombinasi Genetik Pada 1970-an, para ilmuwan menemukan kelas enzim yang memutuskan DNA dalam kombinasi nukleotida tertentu. Enzim ini dikenal sebagai enzim restriksi. Penemuan itu memungkinkan ilmuwan lain untuk mengisolasi DNA dari sumber yang berbeda dan menciptakan molekul rDNA buatan pertama. Penemuan-penemuan lain menyusul, dan saat ini ada sejumlah metode untuk menggabungkan kembali DNA. Sementara beberapa ilmuwan berperan penting dalam mengembangkan proses DNA rekombinan ini, Peter Lobban, seorang mahasiswa pascasarjana di bawah bimbingan Dale Kaiser di Departemen Biokimia Universitas Stanford, biasanya dianggap sebagai orang pertama yang menyarankan gagasan DNA rekombinan. Orang lain di Stanford berperan penting dalam mengembangkan teknik asli yang digunakan. Sementara mekanisme dapat sangat berbeda, proses umum rekombinasi genetik melibatkan langkah-langkah berikut. Gen tertentu misalnya, gen manusia diidentifikasi dan diisolasi. Gen ini dimasukkan ke dalam vektor . Vektor adalah mekanisme di mana materi genetik gen dibawa ke sel lain. Plasmid adalah contoh vektor umum. Vektor dimasukkan ke organisme lain. Ini dapat dicapai dengan sejumlah metode transfer gen yang berbeda seperti sonikasi, injeksi mikro, dan elektroporasi. Setelah pengenalan vektor, sel-sel yang memiliki vektor rekombinan diisolasi, diseleksi, dan dikultur. Gen diekspresikan sehingga produk yang diinginkan akhirnya dapat disintesis, biasanya dalam jumlah besar. Contoh Teknologi DNA Rekombinan Contoh rDNA. red_moon_rise/E+/Getty Images Teknologi DNA rekombinan digunakan dalam sejumlah aplikasi termasuk vaksin, produk makanan, produk farmasi, pengujian diagnostik, dan tanaman rekayasa genetika. Vaksin Vaksin dengan protein virus yang dihasilkan oleh bakteri atau ragi dari rekombinasi gen virus dianggap lebih aman daripada yang dibuat dengan metode yang lebih tradisional dan mengandung partikel virus . Produk Farmasi Lainnya Seperti disebutkan sebelumnya, insulin adalah contoh lain dari penggunaan teknologi DNA rekombinan. Sebelumnya, insulin diperoleh dari hewan, terutama dari pankreas babi dan sapi, tetapi menggunakan teknologi DNA rekombinan untuk memasukkan gen insulin manusia ke dalam bakteri atau ragi membuatnya lebih mudah untuk diproduksi dalam jumlah yang lebih besar. Sejumlah produk farmasi lainnya, seperti antibiotik dan pengganti protein manusia, diproduksi dengan metode serupa. Produk makanan Sejumlah produk makanan diproduksi menggunakan teknologi DNA rekombinan. Salah satu contoh umum adalah enzim chymosin, enzim yang digunakan dalam pembuatan keju. Secara tradisional, ditemukan dalam rennet yang dibuat dari perut anak sapi, tetapi memproduksi chymosin melalui rekayasa genetika jauh lebih mudah dan lebih cepat dan tidak memerlukan pembunuhan hewan muda. Saat ini, sebagian besar keju yang diproduksi di Amerika Serikat dibuat dengan chymosin yang dimodifikasi secara genetik. Pengujian Diagnostik Teknologi DNA rekombinan juga digunakan dalam bidang pengujian diagnostik. Pengujian genetik untuk berbagai kondisi, seperti cystic fibrosis dan distrofi otot, telah mendapat manfaat dari penggunaan teknologi rDNA. Tanaman-tanaman Teknologi DNA rekombinan telah digunakan untuk menghasilkan tanaman tahan serangga dan herbisida. Tanaman tahan herbisida yang paling umum tahan terhadap aplikasi glifosat, pembunuh gulma yang umum. Produksi tanaman seperti itu bukan tanpa masalah karena banyak yang mempertanyakan keamanan jangka panjang dari tanaman rekayasa genetika tersebut. Masa Depan Manipulasi Genetik Para ilmuwan bersemangat tentang masa depan manipulasi genetik. Sementara teknik di cakrawala berbeda, semua memiliki kesamaan ketepatan genom yang dapat dimanipulasi. CRISPR-Cas9 Salah satu contohnya adalah CRISPR-Cas9. Ini adalah molekul yang memungkinkan penyisipan atau penghapusan DNA dengan cara yang sangat tepat. CRISPR adalah singkatan dari "Clustered Regularly Interspaced Short Palindromic Repeats" sedangkan Cas9 adalah singkatan dari "CRISPR related protein 9". Selama beberapa tahun terakhir, komunitas ilmiah telah bersemangat tentang prospek penggunaannya. Proses terkait lebih cepat, lebih tepat, dan lebih murah daripada metode lain. Pertanyaan Etis Sementara banyak kemajuan memungkinkan teknik yang lebih tepat, pertanyaan etis juga diajukan. Misalnya, karena kita memiliki teknologi untuk melakukan sesuatu, apakah itu berarti kita harus melakukannya? Apa implikasi etis dari pengujian genetik yang lebih tepat, terutama yang berkaitan dengan penyakit genetik manusia? Dari karya awal Paul Berg yang mengorganisir Kongres Internasional tentang Molekul DNA Rekombinan pada tahun 1975, hingga pedoman saat ini yang ditetapkan oleh The National Institutes of Health NIH, sejumlah masalah etika yang valid telah diangkat dan ditangani. Pedoman NIH Pedoman NIH, mencatat bahwa mereka "merinci praktik keselamatan dan prosedur penahanan untuk penelitian dasar dan klinis yang melibatkan molekul asam nukleat rekombinan atau sintetis , termasuk pembuatan dan penggunaan organisme dan virus yang mengandung molekul asam nukleat rekombinan atau sintetis." Pedoman ini dirancang untuk memberikan peneliti pedoman perilaku yang tepat untuk melakukan penelitian di bidang ini. Ahli bioetika berpendapat bahwa sains harus selalu seimbang secara etis, sehingga kemajuan bermanfaat bagi umat manusia, bukan berbahaya. Sumber Kochunni, Deena T, dan Jazir Haneef. “5 Langkah Teknologi DNA Rekombinan atau Teknologi RDNA.” 5 Langkah dalam Teknologi DNA Rekombinan atau Teknologi RDNA ~, Ilmu Kehidupan. “Penemuan Teknologi DNA Rekombinan Media Majalah LSF.” Medium, Majalah LSF, 12 November 2015, “Pedoman NIH - Kebijakan Kantor Ilmu Pengetahuan.” Institut Kesehatan Nasional, Departemen Kesehatan dan Layanan Kemanusiaan AS,
Diterima 3 Februari 1998/Disetujui 27 Februari 1998 Bioteknologi saat ini bukan hanya terbatas pad a suatu kata saja, tetapi telah menjadi salah satu simbol perkem-bangan mutakhir dari ilmu pengetahuan dan teknologi. Pe-nerimaan terhadap bioteknologi juga bersifat mendunia. Tidak diragukan lagi bahwa negara-negara di dunia telah menyandilfkan banyak harapan dari bioteknologi. Perkem-bangan yang pesat dapat dilihat dari tumbuhnya berbagai perusahaan kecil sampai raksasa yang berdasarkan biotek-nologi sejalan dengan pembentukan komite-komite biotek-nologi dalam berbagai sistem pemerintahan. Selain itu juga dapat diamati penyebaran dan pengenalan mata kuliah bio-teknologi di berbagai universitas. Pemerintah dari negara-negara maju maupun yang sedang berkembang telah mengalokasikan sejumlah dana untuk mempercepat perkembangan bioteknologi di negara-nya, meskipun ada perbedaan dalam hal jumlah dana dan efisiensi pemakaiannya. Pada umumnya mereka mengha-rapkan agar kesejahteraan masyarakat dapat dipercepat dan ditingkatkan dengan bantuan bioteknologi. Banyak aspek bioteknologi yang telah membuahkan hasil berupa produk yang mempunyai nilai komersial tinggi. Dalam bidang kedokteran, bioteknologi akan mem-bawa cara-cara bam untuk diagnosis, pengobatan, dan pen-cegahan penyakit. Dalam bidang pertanian, setiap aspeknya mulai dari penempatan benih di dalam tanah sampai ma-kanan siap di meja makan akan terpengaruh oleh teknologi ini. Selain itu, bioteknologi juga menjadi sandaran untuk penyelamat lingkungan karena menawarkan berbagai alter-natifuntuk membersihkan Iingkungan dari pencemaran yang sulit dibersihkan dengan cara-cara lain. Meskipun banyak dari kita yakin bahwa bioteknologi itu penting, tetapi kebanyakan dari kita tidak mengetahui dengan tepat apa yang dimaksud dengan bioteknologi. Hal yang membingungkan terse but dapat dimengerti kar-ena is-tilah bioteknologi sering kali didefinisikan berbeda oleh orang yang berbeda. Apakah bioteknologi itu sebenarnya? DEFINISI BIOTEKNOLOGI Istilah bioteknologi pertama kali dikemukakan oleh Karl Ereky, seorang insinyur hongaria, pada tahun 1917 untuk mendeskripsikan produksi babi dalam skala besar de-ngan menggunakan bit gula sebagai sumber pakannya. Sampai tahun 1970-an bioteknologi selalu berasosiasi dengan rekayasa biokimia biochemical engineering dan pada umumnya kuliah-kuliah yang berhubungan dengan bio-teknologi juga diberikan oleh Jurusan Rekayasa Kimia atau Rekayasa Biokimia. Sesungguhnya mendefinisikan bioteknologi sangat gam pang. Pecahlah kata tersebut berdasarkan akar katanya "bio" dan "teknologi", maka akan diperoleh definisi sebagai berikut Penggunaan organisme atau sistem hidup untuk me-mecahkan suatu masalah atau untuk menghasilkan produk yang berguna. Dengan definisi tersebut dapat dipahami bahwa bio-teknologi bukanlah sesuatu yang bam. Kita telah mendo-mestikasi tanaman dan hewan sekitar 10 000 tahun yang lalu. Selama beribu-ribu tahun kita telah menggunakan mik-rob seperti khamir dan bakteri untuk membuat produk-produk berguna seperti roti, anggur, keju, yogurt, tempe, dan nata de coco. Hampir semua antibiotik berasal dari mikrob, demikian juga enzim-enzim yang dipakai untuk ber-bagai keperluan mulai dari pembuatan sirup fruktosa sampai pencucian pakaian. Dalam bidang pertanian, kita telah menggunakan mikrob sejak abad 19 untuk penyuburan tanah melalui bakteri-bakteri penambat N r Mikrob juga telah digunakan secara ekstensif untuk pembersihan Iimbah dan kotoran selama berpuluh-puluh tahun. Dalam bidang medis, vaksin-vaksin tertentu dibuat dari virus atau bakteri tertentu yang telah dilemahkan. lika demikian, mengapa sering dikatakan bahwa bio-teknologi adalah suatu terobosan teknologi yang revo-lusioner, padahal teknologi ini mungkin sudah ada sejak adanya peradaban manusia. Berikut ini adalah jawabannya. Selama periode 1960-an sampai 1970-an, pengetahuan kita tentang biologi sel dan molekuler telah sampai pada suatu titik yang memungkinkan kita untuk memanipulasi suatu organisme di taraf seluler atau molekuler. Memanipulasi suatu organisme untuk kepentingan kita bukanlah suatu hal yang barn. Yang baru yaitu bagaimana kita melakukan ma-nipulasi tersebut. Figures - uploaded by Antonius SuwantoAuthor contentAll figure content in this area was uploaded by Antonius SuwantoContent may be subject to copyright. Discover the world's research25+ million members160+ million publication billion citationsJoin for free Hoyati. Maret 1998, him. 25-28 ISSN 0854-8587 Vol. 5. ULASAN Bioteknologi Molekuler Mengoptimalkan Manfaat Keanekaan Hayati Melalui Teknologi DNA Rekombinan ANTONIUS SUWANTO Jurusan Biologi FMIPA IPB, Jalan Raya Pajajaran, Bogor 16144, dan Southeast Asian Regional Center for Tropical Biology, Kotak Pos 116, Bogor 16001 TeL 62-251-625965, Fax. 62-251-621724, E-mail asuwanto Diterima 3 Februari 1998/Disetujui 27 Februari 1998 Bioteknologi saat ini bukan hanya terbatas pad a suatu kata saja, tetapi telah menjadi salah satu simbol perkem-bangan mutakhir dari ilmu pengetahuan dan teknologi. Pe-nerimaan terhadap bioteknologi juga bersifat mendunia. Tidak diragukan lagi bahwa negara-negara di dunia telah menyandilfkan banyak harapan dari bioteknologi. Perkem-bangan yang pesat dapat dilihat dari tumbuhnya berbagai perusahaan kecil sampai raksasa yang berdasarkan biotek-nologi sejalan dengan pembentukan komite-komite biotek-nologi dalam berbagai sistem pemerintahan. Selain itu juga dapat diamati penyebaran dan pengenalan mata kuliah bio-teknologi di berbagai universitas. Pemerintah dari negara-negara maju maupun yang sedang berkembang telah mengalokasikan sejumlah dana untuk mempercepat perkembangan bioteknologi di negara-nya, meskipun ada perbedaan dalam hal jumlah dana dan efisiensi pemakaiannya. Pada umumnya mereka mengha-rapkan agar kesejahteraan masyarakat dapat dipercepat dan ditingkatkan dengan bantuan bioteknologi. Banyak aspek bioteknologi yang telah membuahkan hasil berupa produk yang mempunyai nilai komersial tinggi. Dalam bidang kedokteran, bioteknologi akan mem-bawa cara-cara bam untuk diagnosis, pengobatan, dan pen-cegahan penyakit. Dalam bidang pertanian, setiap aspeknya mulai dari penempatan benih di dalam tanah sampai ma-kanan siap di meja makan akan terpengaruh oleh teknologi ini. Selain itu, bioteknologi juga menjadi sandaran untuk penyelamat lingkungan karena menawarkan berbagai alter-natifuntuk membersihkan Iingkungan dari pencemaran yang sulit dibersihkan dengan cara-cara lain. Meskipun banyak dari kita yakin bahwa bioteknologi itu penting, tetapi kebanyakan dari kita tidak mengetahui dengan tepat apa yang dimaksud dengan bioteknologi. Hal yang membingungkan terse but dapat dimengerti kar-ena is-tilah bioteknologi sering kali didefinisikan berbeda oleh orang yang berbeda. Apakah bioteknologi itu sebenarnya? DEFINISI BIOTEKNOLOGI Istilah bioteknologi pertama kali dikemukakan oleh Karl Ereky, seorang insinyur hongaria, pada tahun 1917 untuk mendeskripsikan produksi babi dalam skala besar de-ngan menggunakan bit gula sebagai sumber pakannya. Sampai tahun 1970-an bioteknologi selalu berasosiasi dengan rekayasa biokimia biochemical engineering dan pada umumnya kuliah-kuliah yang berhubungan dengan bio-teknologi juga diberikan oleh Jurusan Rekayasa Kimia atau Rekayasa Biokimia. Sesungguhnya mendefinisikan bioteknologi sangat gam pang. Pecahlah kata tersebut berdasarkan akar katanya "bio" dan "teknologi", maka akan diperoleh definisi sebagai berikut Penggunaan organisme atau sistem hidup untuk me-mecahkan suatu masalah atau untuk menghasilkan produk yang berguna. Dengan definisi tersebut dapat dipahami bahwa bio-teknologi bukanlah sesuatu yang bam. Kita telah mendo-mestikasi tanaman dan hewan sekitar 10 000 tahun yang lalu. Selama beribu-ribu tahun kita telah menggunakan mik-rob seperti khamir dan bakteri untuk membuat produk-produk berguna seperti roti, anggur, keju, yogurt, tempe, dan nata de coco. Hampir semua antibiotik berasal dari mikrob, demikian juga enzim-enzim yang dipakai untuk ber-bagai keperluan mulai dari pembuatan sirup fruktosa sampai pencucian pakaian. Dalam bidang pertanian, kita telah menggunakan mikrob sejak abad 19 untuk penyuburan tanah melalui bakteri-bakteri penambat Nr Mikrob juga telah digunakan secara ekstensif untuk pembersihan Iimbah dan kotoran selama berpuluh-puluh tahun. Dalam bidang medis, vaksin-vaksin tertentu dibuat dari virus atau bakteri tertentu yang telah dilemahkan. lika demikian, mengapa sering dikatakan bahwa bio-teknologi adalah suatu terobosan teknologi yang revo-lusioner, padahal teknologi ini mungkin sudah ada sejak adanya peradaban manusia. Berikut ini adalah jawabannya. Selama periode 1960-an sampai 1970-an, pengetahuan kita tentang biologi sel dan molekuler telah sampai pada suatu titik yang memungkinkan kita untuk memanipulasi suatu organisme di taraf seluler atau molekuler. Memanipulasi suatu organisme untuk kepentingan kita bukanlah suatu hal yang barn. Yang baru yaitu bagaimana kita melakukan ma-nipulasi tersebut. 26 ULASAN Sebelumnya, kita menggunakan suatu organisme utuh untuk seleksi bahan genetika unggul, tetapi sekarang kita menggunakan sel-sel dan molekul organisme tersebut. Sebelurnnya kita melakukan manipulasi tanpa mengetahui mekanisme yang mendasari manipulasi tersebut sehingga sulit diprediksi hasilnya, tetapi sekarang kita mengerti manipulasi yang kita lakukan pada taraf yang paling mendasar yaitu taraf molekuler. Oleh karena itu, kita dapat memprediksi pengaruh manipulasi yang dilakukan dan mengarahkan perubahan yang diinginkan dengan tingkat ketepatan yangjauh lebih tinggi. Selama sekitar 45 tahun sejak Karl Ereky memper-kenalkan istilah bioteknologi, istilah ini telah dipakai de-ngan pengertian berbeda oleh pakar yang berbeda sehingga menimbulkan kerancuan. Kerancuan ini berakhir pada 1961 ketika Carl Goren Heden merekomendasikan agar nama suatu jumal saintifik untuk mempublikasi penelitian dalam bidang mikrobiologi terapan dan fennentasi diubah dari Journal oj Microbiological and Biochemical Engineering and Technology menjadi Biotechnology and Bioengi-neering. Sejak saat itu, bioteknoloogi diartikan sebagai "produksi barang dan jasa menggunakan organisme, sistem, atau proses biologi". Oleh karena itu penelitian bioteknologi sangat bergantung pada mikrobiologi, biokimia, dan reka-yasakimia. Suatu proses fndustri bioteknologi yang menggunakan mikroorganisme untuk menghasilkan suatu produk, pada dasamya terdiri atas tiga tahapan utama Gambar I yang secara umum dapat dideskripsikan sebagai berikut I. Proses hulu Serangkaian perlakuan dilibatkan pada bahan mentah sehingga dapat digunakan sebagai sumber makanan bagi mikroorganisme sasaran. 2. Fennentasi dan transfonnasi Penumbuhan mikroor-ganisme sasaran dalam bioreaktor besar biasanya lebih dari 100 liter yang diikuti dengan produksi hasil biotransfonnasi bahan yang diinginkan, misalnya antibiotik, asam amino, enzim, atau asam-asam organik. 3. Proses hilir Pemumian senyawa atau bahan yang di-inginkan dari medium fennentasi atau dari massa sel. Penelitian-penelitian bioteknologi dimaksudkan untuk memaksimalkan efisiensi tiap tahap dalam proses biotek-nologi serta dapat menemukan mikroorganisme yang sesuai untuk produksi pangan, pakan, suplemen pangan, dan obat-obatan. Selama tahun 1960-an sampai 1970-an, penelitian-penelitian ini difokuskan pada proses hulu, desain bioreak-tor, dan proses hilir. Oleh karena itu banyak dihasilkan in-fonnasi yang menjadi dasar penting bagi pembuatan bio-reaktor serta instrumentasinya, serta teknologi scale-up yang lebih efisien dalam menghasilkan berbagai produk. Dari keseluruhan prosesindustri bioteknologi, bagian biotransfonnasi merupakan komponen yang paling sulit dioptimalkan secara sistematis. Pad a umurnnya, galur-galur mikrob yang diisolasi dari alam tidak optimal untuk dipakai langsung dalam industri bioteknologi. Oleh karena itu in-Hayati duksi mutasi melalui mutagenesis kimia atau radiasi ultra-violet digunakan untuk mengubah secara acak sus un an ge-netika suatu galur mikrob dengan harapan dapat diperoleh galur yang profilnya lebih optimal. Dalam beberapa hal misalnya dalam produksi antibiotik. cara-cara mutasi acak dan seleksi telah berhasil dilakukan. Meskipun demikian pada sebagian industri bioteknologi lainnya. mutasi acak malah menurunkan produksi atau hasilnya sulit sekali di-prediksi karena adanya mutasi pada bagian-bagian lain dari genom mikrob yang bersangkutan. Selain itu, derajat per-baikan galur masih sangat dibatasi oleh sistem biologi yang ada. Contohnya dalam produksi asam sitrat digunakan Aspergillus niger yang mampu memproduksi asam sitrat dengan rendemen tinggi. Tetapi untuk fennentasi media pa-dat, spora kapang ini dapat menimbulkan masalah medis yang relatif sulit penanganannya di lapangan. Sementara itu mutasi acak untuk meniadakan spora dari Aspergillus niger tanpa menurunkan rendemen asamnya sangat sulit sekali dilakukan tanpa melewati batas-batas biologi Aspergillus niger. Perbaikan genetika secara tradisional mutasi acak sangat memakan waktu. tidak dapat diprediksi hasilnya, dan menjadi mahal karena banyaknya galur atau mutan yang harus diseleksi, ditapis. dan selanjutnya diuji kemam-puannya untuk keperJuan tertentu. Meskipun demikian, sam-pai sekitar akhir 1970-an bioteknologi telah menjadi suatu disiplin tersendiri yang sudah mapan dengan prosedur-prosedur khas untuk mengembangkan berbagai produk ko-mersial. Perkembangan bioteknologi berubah drastis sejak di-temukannya teknologi DNA rekombinan. Perubahan ini sa-ngat nyata terutama dalam hal teknologi proses hulu. dan seleksi galur. Dengan teknologi DNA rekombinan kita tidak saja mampu melakukan perbaikan galur dengan tepat dan dapat diprediksi. tetapi juga dapat merancang bangun galur baru dengan bahan genetika tambahan yang tidak pemah ada pada galur asalnya. Dalam kasus produksi asam sitrat, misalnya kita dapat memindahkan gen-gen kunci untuk bio-sintesis asam sitrat dari Aspergillus niger ke dalam kapang lain atau bakteri sehingga lebih memudahkan penanganan pada proses hilirnya atau menghindari masalah adanya spora. Dengan adanya teknologi DNA rekombinan, maka optimasi biotransformasi dalam suatu proses bioteknologi dapat diperoleh dengan lebih terarah dan langsung. Tekno-logi DNA rekombinan atau rekayasa genetika memung-kinkan kita merancang bangun, bukan hanya mengisolasi suatu galur yang sangat produktif. Sel prokariot atau eukariot dapat digunakan sebagai "pabrik biologi" untuk memproduksi insulin, interferon, honnon pertumbuhan, bahan anti virus, dan berbagai macam protein lainnya. Tek-nologi DNA rekombinan juga memungkinkan produksi senyawa-senyawa tertentu yang jumlahnya secara alami sangat sedikit sehingga tidak ekonomis bila diekstrak Bahan mentah Proses Fennentasi & Proses Produk ~ akhir ~ hulu ~ biotransfonnasi ~ hilir Gambar I. Tahap-tahap dalam proses industri melalui bioteknologi. fol. 5,1998 angsung dari sumber alaminya. Sebagai contoh, indigo - zat varna biru yang dipakai untuk mewarnai blue jeans - telah Iiproduksi oleh Escherichia coli rekombinan sehingga da-,at diperoleh indigo yang relatif lebih ekonomis, selalu ter-,edia, dan dengan teknologi yang lebih ramah Iingkungan. rumbuhan dan hewan juga dapat digunakan sebagai bio-eaktor untuk menghasilkan produk baru atau produk hasil nodifikasi yang tidak mungkin diperoleh dengan seleksi nutagenesis atau persilangan biasa. Akhimya, teknologi ini nemungkinkan kita untuk menangani penyakit-penyakit ;enetika melalui terapi gen, masalah pengobatan berbagai enis kanker, dan penyediaan vaksin DNA sebagai altematif Illksin masa depan. Penggabungan antara teknologi DNA rekombinan lengan bioteknologi melahirkan suatu bidang studi yang angat dinamis dan kompetitif yang disebut Bioteknologi l,Iolekuler. Bidang studi yang relatif baru ini, seperti halnya .erkembangan awal biologi molekuler di tahun I 960-an. lipenuhi oleh berbagai harapan yang kadang-kadang me-ampaui kemampuan para pakar pada saat itu untuk meng-1llSilkan suatu produk. Oleh karena itu dalam mencermati .erkembangan bioteknologi molekuler kita sebaiknya dapat nelihat sisi harapan, kenyataan, atau fantasi dari bidang ;tudi yang sedang berkembang pesat ini. Karena bioteknologi molekuler berubah sangat pesat, naka suatu strategi penelitian yang saat ini sangat relevan Ian menjanjikan dapat berbalik menjadi strategi yang tidak konomis, tidak efisien, atau sulit sekali implementasinya. iementara itu cara-cara atau pendekatan lain mulai marak libicarakan atau dilakukan sebagai strategi altematif. Oleh wena itu, industri bioteknologi modem harus dapat me-nantau perkembangan disiplin ilmu terkait sehingga selalu lapat mengoptimalkan proses-proses industrinya. Dengan lemikian, tampaknya tidak terlalu berlebihan bila dikatakan >ahwa industri bioteknologi molekuler adalah industri yang erbasis riset research-based industry. Di masa de pan, ale dapat dielakkan lagi bahwa bioteknologi molekuler akan nenjadi metode baku untuk mengembangkan suatu sistem lidup dengan fungsi atau kemampuan baru dalam mempro-luksi suatu barang ataujasa. Oleh karena itu, perkembangan ndustri bioteknologi akan selalubergantung pada penelitian lasar yang serius dan tepat sasaran. Sebagian besar disiplin sains tidak berdiri sendiri. isiplin sains pada umumnya merupakan peleburan penge-ahuan dari berbagai riset yang berbeda. Untuk bioteknologi nolekuler, komponen bioteknologi dikembangkan dan di-;empumakan oleh pakar-pakar mikrobiologi industri dan ~ekayasa kimia, sedangkan pengembangan komponen tek-lologi DNA rekombinan sangat bergantung pada penemu-Ul-penemuan dalam biologi molekuler, genetika, biokimia, ian mikrobiologi. Sebagian besar pengetahuan yang men-iasari bioteknologi dihasilkan oleh penelitian-penelitan da-lar di universitas Tabel 1. Jadi, bioteknologi molekuler laIlgat bergantung pada perkembangan berbagai penge-ahuan dasar dalam usahanya untuk menghasilkan produk-~roduk komersial yang kompetitif. ULASAN 27 Tabe1 I. Perkembangan sejarah bioteknologi molekuler. Tahun Peristiwa 1917 Ereky memperkenalkan istilah bioteknologl 1943 Pen,isilin diproduksi dalam skala industri 1944 Avery, Macleod, McCarty mendemonstrasikan bahwa DNA adalah bahan genetika 1953 Watson dan Crick menentukan struktur DNA 1961 Jurnal Biotechnology and Bioengineering ditetapkan 1961-1966 Seluruh sandi genetika terungkapkan 1970 Enzim restriksi endonuklease pertama kali diisolasi 1972 Khorana dan kawan-kawan berhasil mensintesis secara kimiawi seluruh gen tRNA 1973 Boyer dan Cohen memaparkan teknologi DNA rekom-binan 1975 Kohler dan Milstein menjabarkan produksi antibodi monoklonal 1976 Perkembangan teknik-teknik untuk menentukan sekuen DNA 1978 Genentech menghasilkan insulin manusia dalam E. coli 1980 Mikroorganisme hasil manipulasi genetika dapat dipa-tenkan Kasus Diamond vs Chakrabarty di Amerika Serikat 1981 Untuk pertama kalinya automated DNA synthesizers dijual secara komersial 1981 Untuk pertama kalinya kit diagnostik berdasar antibodi disetujui untuk dipakai di Amerika Serikat 1982 Untuk pertama kalinya vaksin hewan hasil teknologi DNA rekombinan disetujui pemakaiannya di Eropa 1983 Plasmid Ti hasil rekayasa genetika dipakai untuk transformasi tanaman 1988 US patent diberikan untuk meneit rentan kanker hasil rekayasa genetika, 1988 Metode Polymerase Chain Reaction dipublikasi 1990 Percobaan terapi gen sel somatik pada manusia disetujui Arnerika Serikat REKA Y ASA GENETIKA DAN KERAGAMAN HAYATI Rekayasa genetika yang sering kali sinonim dengan teknologi DNA rekombinan merupakan tulang punggung dan pemicu lahimya bioteknologi molekuler. DNA rekom-binan dikonstruksi dengan menggabungkan materi genetika dari dua atau lebih sumber yang berbeda atau melakukan perubahan secara terarah pada suatu materi genetika terten-tu. Di alam, materi genetika melakukan rekombinasi secara konstan. Berikut ini adalah beberapa contoh rekombinasi genetika dari dua sumber atau lebih i Rekombinasi yang terjadi saat proses meiosis dalam pembentukan garnet tanpa atau dengan terjadinya pindah silang, ii Saat sperma dan ovum melebur pada proses fertilisasi, dan iii Saat sel prokariot melakukan transaksi bahan genetika melalui kon-jugasi, transformasi, atau transduksi. 28 ULASAN Dalam tiap contoh rekombinasi tersebut dapat di-mengerti bahwa rekombinasi merupakan salah satu cara untuk meningkatkan terjadinya keragaman hayati di alamo Materi genetika yang ada di alam menyajikan suatu bahan mentah evolusi yang dilakukan oleh seleksi alam atau se-leksi buatan yang dilakukan oleh manusia. A. Penggunaan Variasi Genetika dalam Pemuliaan Segera setelah manusia mampu mendomestikasi or-ganisme, maka mulailah terjadi pemuliaan secara selektif untuk mengubah bahan genetikanya sesuai dengan ke-inginan. Suatu individu tertentu dalam populasi, yang ber-arti suatu materi genetika tertentu, disukai oleh manusia dan dipakai sebagai induk untuk generasi-generasi organisme berikutnya. Dengan menyeleksi suatu variasi genetika ter-tentu dari suatu populasi dan menyingkirkan variasi gene-tika lainnya, maka kita sudah melakukan rekombinasi bahan genetika dengan terarah dan dengan tujuan khusus. Aki-batnya, kita secara radikal mengubah bahan genetika orga-nisme yang telah kita domestikasikan. Dengan demikian, variasi genetika telah menjadi sum-ber alami bagi manusia untuk melakukan eksploitasi selama berabad-abad. Pengetahuan kita untuk melakukan pe-muliaan secara selektif dan yang hasilnya makin dapat di-prediksi telah berkembang pesat. Rekayasa genetika me-rupakan langkah berikutnya dalam kesinambungan us~ha manusia untuk mencari varietas atau galur yang pahng sesuai. B. Variasi Genetika Melalui Rekayasa Genetika Istilah teknologi DNA rekombinan atau rekayasa ge-netika secara ringkas dapat diartikan sebagai teknik mole-kuler yang dengan tepat mampu mengubah suatu molekul DNA, atau menggabungkan molekul DNA tertentu dari sumber-sumber yang berbeda. Rekombinasi DNA dilakukan dengan enzim enzim restriksi dan ligase yang dapat mela-kukan pemotongan dan penyambungan molekul DNA de-ngan tepat dan dapat diprediksi. DNA rekombinan selan-jutnya dimasukkan ke dalam organisme sasaran melalui in-troduksi langsung transformasi, melalui virus, atau bakteri. Oleh karena itu, dalam melakukan rekombinasi gene-tika, seorang pemulia selain dapat melakukannya m~lalui penggabungan sel telur dan sperma atau serbuk sarI dan putik pada tanaman pada metode pemuliaan selektif, dia dapat pula melakukan rekombinasi bahan genetika ketelitian yang lebih tinggi dengan melakukannya dl taraf molekuler. C. Pemuliaan Selektifvs Rekayasa. Genetika Banyak pakar memandang rekayasa genetika secara sederhana sebagai kelanjutan dari teknik pemuliaan selektif karena kedua teknik itu pada dasarnya bertujuan untuk menggabungkan materi gen~tika dari sumber. ~a~g .berb~da untuk menghasilkan organlsme yang memlhkl slfat-slfat Hayati baru yang berguna. Meskipun pada dasamya rekayasa gene. tika dan pemuliaan selektif memiliki kesamaan, namun kedua teknik itu juga memiliki perbedaan-perbedaan pen. ting Tabel 2. Tabel 2. Perbedaan antara pemuliaan selektif dan rekayasa genetika. Parameter Pemuliaan selektif Rekayasa genetika Tingkat Organisme utuh Sel atau molekul Ketepatan Sekumpulan gen Satu gen lunggal Kepaslian Perubahan genelika Perubahan bahan gene-sulil atau lidak mung-lika dapal dikarakleri-kin dikaraklerisasi sasi dengan baik Balasan laksonomi Hanya dapat dipakai Tidak ada balasan dalam salU spesies atau laksonoml salu genus Dalam rekayasa genetika, kita memindahkan satu gen tunggal yang fungsinya sudah diketahui dengan jelas, se-dangkan pada umumnya yang dipindahkan berupa kum-pulan gen, meskipun dalam metode pemuliaa~ tanaman ada metode silang balik back cross yang tuJuannya men-transfer satu gen sehingga diperoleh galur isogenik. Dengan meningkatkan ketepatan dan kepastian dalam manipulasi ge-netika, maka resiko untuk menghasilkan organisme dengan sifat-sifat yang tidak diharapkan dapat diminimurnkan. Model uji coba trial-and-error dalam pemuliaan selektif dapat dibuat menjadi lebih tepat ~elalui reka~asa genetik~. Dalam pemuliaan selektif klta mengawmkan orgams-me dari satu spesies. dari spesies yang berbeda, atau ka-dang-kadang dari genus yang berbeda. Dalam ~ genetika sudah tidak ada lagi hambatan taksonoml. Man~pulasi genetika tidak lagi terbatas I?ada sekelompok k~cIl variasi genetika. Bila kita inginkan suatu bahan. genetik~ untuk disisipkan pada suatu organisme, maka tldak lagl menjadi masalah seberapa jauh hubungan keke~abatan orga-nisme pemilik bahan genetika tersebut. Sebagal contoh, gen penyandi antibodi dari manusia dapat dipindahkan k~ ta naman tembakau sehingga kita dapat memanen antlbo~1 bukan dari hewan percobaan, yang sering kali kurang dl sukai oleh kelompok pencinta binatang, tetapi langsung d~ ekstrak daun tembakau. Kemampuan memindahkan gen dar~ satu organisme ke organisme lain tanpa batasan taksonoml memungkinkan kita memanfaatkan sumber daya alam y~g luar biasa, yaitu keragaman hayati biodiversity. Tentu saJa semua usaha itu dapat dilakukan dengan dampak yang minimal bila kita mau belajar dari kearifan proses-proses biologi yang mendasari keragaman tersebut. DAFT AR PUST AKA Glick, & Pasternak. 1994. Molecular 8io-technology PrinCiples and Applications of Recom-binant DNA. Washington, ASM Press. Russo, E. & D. Cove. 1995. Genetic Engineering Dream.~ and Nightmares. New York Freeman. ... Melalui teknologi DNA rekombinan kita tidak hanya dapat memperbaiki sifat suatu galur dengan tepat, tetapi juga dapat merancang galur baru yang di dalamnya terdapat materi genetik tambahan yang sebelumnya tidak ada pada galur asalnya. Selain itu, melalui teknologi DNA rekombinan sel prokariot atau eukariot dapat dimanfaatkan sebagai pabrik biologi untuk memproduksi insulin, hormon pertumbuhan, bahan anti-virus, dan bermacam protein lainnya, serta memungkinkan untuk memproduksi senyawa-senyawa tertentu yang sangat sedikit jumlahnya jika diekstrak langsung secara alami Suwanto, 1998. ...Bioteknologi lahir dari perkembangan teknologi dan ilmu pengetahuan di bidang matematika, biologi, fisika, dan kimia. Dalam keseharian kita sudah melakukan praktik bioteknologi di tingkat sederhana seperti fermentasi pada olahan pangan pembuatan tempe hingga rekayasa genetik yang menggunakan Polimerase Chains Reaction PCR dalam pengaplikasiannya. Bioteknologi dibahas secara sederhana dalam buku ini. Hal itu bertujuan agar buku ini mudah dipahami. Buku ini berisi dari 9 sembilan bab yang menunjang informasi tetang bioteknologi. Bab 1 Pengenalan Bioteknologi Bab 2 Struktur Gen Prokariot dan Eukariot Bab 3 Polymerase Chain Reaction Bab 4 Teknologi DNA Rekombinan dan Transgenik Bab 5 Teknologi Fermentasi, Manfaat dan Aplikasinya Bab 6 Enzim Dan Peranannya Dalam Bioteknologi Bab 7 Produksi Massal Enzim Untuk Komersial Bab 8 Bioteknologi Tanaman, Manfaat dan Aplikasinya Bab 9 Rekayasa Genetika Teknologi DNA-rekombinan dan Aplikasinya Khairunnisa LubisRevolusi hijau green revolution yang dikumandangkan 1960 yang ditandai dengan perbaikan bercocok tanam seperti penggunaan bibit unggul, Oleh KHAIRUNNISA LUBIS pemuliaan tanaman-khairunnisa3ResearchGate has not been able to resolve any references for this publication.
SDMahasiswa/Alumni Universitas Negeri Surabaya25 Februari 2022 0641Hallo Amel, Kakak bantu jawab ya Plasmid merupakan DNA bakteri yang terpisah dari kromosom bakteri. Plasmid pada bakteri mengandung berbagai gen dan dapat melakukan replikasi sendiri. Plasmid bakteri sering dimanfaatkan sebagai vektor dalam proses rekombinasi DNA. Hal tersebut disebabkan karena plasmid memiliki beberapa karakteristik berikut. 1. Merupakan molekul DNA yang mengandung gen tertentu. 2. Plasmid dapat bereplikasi diri. 3. Plasmid dapat berpindah ke sel bakteri lain. Semoga membantu ^_^BBjdi jawaban singkatt nya apaYah, akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!
seorang peneliti melakukan penelitian menggunakan teknologi dna rekombinan