BerandaPendidikan.matematika PEMBAHASAN SELISIH NILAI TERTINGGI DAN TERENDAH SOAL NOMOR 40 UJIAN SEKOLAH/MADRASAH SD/MI TAHUN PELAJARAN 2014/2015 KODE P2 UTAMA No.40 Data nilai hasil ulangan matematika dari 15 orang siswa kelas 5 adalah sebagai berikut : 80, 60, 65, 55, 75, 85, 95, 90, 85, 80, 65, 80, 90, 80, 85.
Pembahasan: Cara cepatnya Urutkan dulu 3,4,4,5,6,8,8,9 Karena genap maka lihat nilai tengahnya yaitu 5 dan 6, maka 5+6/2 = 5,5 maka mediannya 5,5. B. Data yang sudah dikelompokan. Jika data sudah dikelompokan maka memakai Rumus ini : Rumus : Rumus Median 4.3. Keterangan :
Selisihsiswa yang memiliki nilai tertinggi dan terendah adalah? 6 10 30 40 Semua jawaban benar Jawaban yang benar adalah: A. 6. Dilansir dari Ensiklopedia, selisih siswa yang memiliki nilai tertinggi dan terendah adalah 6. [irp] Pembahasan dan Penjelasan Menurut saya jawaban A. 6 adalah jawaban yang paling benar, bisa dibuktikan dari buku bacaan dan
Hitunglahselisih frekuensi kelas modus dengan kelas sebelumnya dan selisih frekuensi kelas modus dengan kelas sesudahnya. Langkah Keempat. Hal itu ditemukan dengan menambahkan nilai terendah dan tertinggi dalam kumpulan data dan membaginya dengan 2. Hal ini menjadi perkiraan rata-rata yang sangat kasar dan dapat dipengaruhi oleh satu nilai
Biladata tersebut telah ada di excel, kita dapat menggunakan range sel untuk data tersebut, misalkan =MIN(A3:A12). Tips Cara Mencari Nilai Terkecil di Microsoft Excel Untuk mencari nilai paling besar atau tertinggi anda dapat menggunakan fungsi MAX() atau untuk lebih jelasnya lihat Cara Mencari Nilai Terbesar/Tertinggi di Microsoft Excel .
Vay Tiền Nhanh Ggads. Estimasi biaya dengan metode titik tertinggi dan terendah high-low method of cost estimation dapat dilakukan dengan mengidentifikasi periode dimana produksi berada pada titik tertinggi dan dalam suatu bisnis, merupakan hal yang tak terhindarkan. Terutama dalam kaitannya dengan biaya campuran yang terdiri dari biaya tetap dan biaya antara komponen biaya tetap dengan biaya variabel adalah hal yang krusial, karena dalam jangka pendek, hanya komponen biaya variabel yang itu, pengklasifikasian biaya, juga, dapat berguna bagi perusahaan ketika melakukan analisis cost volume profit CVP analysisJadi, estimasi adalah mengenai bagaimana menggunakan data saat ini, untuk memperkirakan dampak dari perubahan jumlah produksi di masa depan terhadap total teknik dapat digunakan dalam melakukan estimasi, yang salah satunya adalah metode titik tertinggi dan titik terendah. Fungsi Persamaan Biaya Campuran Sebelum masuk ke pembahasan mengenai estimasi biaya dengan metode titik tertinggi dan terendah, saya akan mengingatkan mengenai fungsi persamaan biaya biaya merupakan persamaan linear antara total biaya campuran, total biaya tetap, dan biaya variabel per adalah persamaan biaya campuranDimana y adalah total biaya campuran mixed cost, a adalah biaya tetap fixed cost, b adalah biaya variabel per unit variable cost per unit, dan x adalah tingkat dengan persamaan tersebut, perusahaan dapat menggunakan biaya historis untuk memperkirakan biaya di masa memperjelas pemahaman akan persamaan tersebut, perhatikan biaya yang dikeluarkan oleh XYZ Cutting Sticker berikut Informasi Biaya XYZ Cutting Sticker Biaya yang dikeluarkan Komponen Biaya Biaya Peralatan desain dan cutting Tetap 50 juta Sewa tempat Tetap 20 juta Bahan baku langsung Variabel 20 ribu Tenaga kerja langsung Variabel 10 ribu Dari pemisahan komponen biaya tersebut, maka, persamaan biaya campuran XYZ Cutting Sticker adalah Total biaya tetap 50 juta + 20 juta = 70 jutaBiaya variabel per unit 20 ribu + 10 ribu = 30 ribuPersamaan biaya campuran y = 70 juta + 30 ribu xMenggunakan persamaan tersebut, XYZ Cutting Sticker dapat memperkirakan biaya pada tiap level produksi seperti berikut Jumlah Produksi Persamaan Biaya Total Biaya 3 ribu y = 70 juta + 30 ribu 3 ribu 160 juta 7 ribu y = 70 juta + 30 ribu 6 ribu 250 juta 9 ribu y = 70 juta + 30 ribu 9 ribu 340 juta Ketika menggunakan persamaan di atas, XYZ Cutting Sticker perlu memastikan komponen biaya yang digunakan untuk membuat persamaan adalah biaya yang relevan terhadap unit atau persediaan yang artinya, bila XYZ Cutting Sticker pada saat memproduksi pada jumlah 9 ribu unit ternyata membutuhkan penambahan peralatan, maka persamaan tersebut perlu disesuaikan Titik Tertinggi dan Titik Terendah Seperti telah dijelaskan sebelumnya, fungsi dari identifikasi komponen biaya perusahaan adalah untuk memperkirakan biaya di masa depan dengan menggunakan biaya satu komponen biaya, yaitu biaya variabel, jumlahnya selalu berubah mengikuti tingkat produksi persediaan hal tersebut, artinya, ada hubungan positif antara biaya dan tingkat produksi, dimana saat yang satu naik, yang lainnya juga naik demikian, terkadang, memisahkan komponen biaya antara biaya variabel dengan biaya tetap tidaklah sesederhana sinilah metode titik tertinggi dan titik terendah high-low method dapat membantu menentukan komponen biaya variabel pada biaya formulanya adalah sebagai berikut Biaya Variabel = Perubahan Biaya Perubahan Produksi = Biaya pada jumlah produksi tertinggi - Biaya pada jumlah produksi terendah / Jumlah produksi tertinggi - Jumlah produksi terendah Untuk mempermudah pemahaman atas metode ini, perhatikan biaya produksi PT XYZ berikut Bulan Produksi Total Biaya Januari 400 460 juta Februari 550 570 juta Maret 600 595 juta April 475 510 juta Mei 650 630 juta Juni 625 620 juta Pertama-tama, dalam menganalisis biaya campuran dengan metode titik tertinggi dan terendah adalah menentukan periode dengan tingkat produksi tertinggi dan terendah, yang dalam kasus ini adalah pada bulan Mei dan beberapa kasus di lapangan, kamu akan menemukan bahwa meskipun tingkat produksi terendah, namun total biaya justru bukan yang demikian, maka kamu tetap dapat menggunakan periode dimana tingkat produksi adalah yang terendah, meskipun secara biaya bukanlah yang terendah. Produksi Total Biaya Tingkat produksi tertinggi Mei 650 630 juta Tingkat produksi terendah Januari 400 460 juta Sekarang, dengan menggunakan formula pada metode titik tertinggi dan titik terendah, kamu dapat menentukan biaya variabel dengan membagi selisih biaya pada periode tertinggi dan terendah dengan perubahan produksi Biaya Variabel = 630 juta - 460 juta 650 - 400 = 170 juta 250 = 680 ribu Dengan metode titik tertinggi dan titik terendah, biaya variabel per unit PT XYZ adalah sebesar 680 untuk menentukan biaya tetap, kamu tinggal membalik fungsi persamaan biaya campuran saja, yaitu Biaya Tetap = Biaya Campuran - Biaya Variabel = 630 juta - 650 x 680 ribu = 630 juta - 442 juta = 188 juta Estimasi Biaya dengan Metode Titik Tertinggi dan Titik Terendah Setelah komponen biaya tetap dan biaya variabel dipisahkan dengan menggunakan metode titik tertinggi dan titik terendah, maka kamu dapat menetukan persamaan biaya campuran PT XYZ sebagai berikuty = 188 juta + 680 ribu xSehingga dengan persamaan ini, sekarang, perusahaan dapat menyimpulkan bahwa untuk tiap penambahan produksi sebanyak 1 unit, biaya variabel akan naik juga sebesar 680 artinya, PT XYZ dapat memperkirakan total biaya di tingkat produksi berapapun itu. Jumlah Produksi Biaya Tetap Biaya Variabel Total Biaya 400 188 juta 272 juta 460 juta 500 188 juta 340 juta 528 juta 600 188 juta 408 juta 596 juta 700 188 juta 476 juta 664 juta PenutupKeunggulan metode titik tertinggi dan terendah dalam mengestimasi biaya adalah kemudahannya untuk memisahkan biaya variabel dengan biaya tetap pada biaya demikian, metode ini juga tak terlepas dari kelemahan, yaitu penentuan perkiraan biaya di masa depan yang hanya menggunakan dua data historis saja data pada produksi tertinggi dan terendah.Pada kenyataannya, biaya aktual dari persamaan ini dapat sangat mengapa penggunaan metode lainnya yang lebih akurat, seperti metode regresi, perlu dipertimbangkan untuk digunakan dalam mengestimasi biaya di masa tulisan saya mengenai estimasi biaya dengan metode titik tertinggi dan titik safe and stay healthy. Take care!
Selamat datang di web digital berbagi ilmu pengetahuan. Kali ini PakDosen akan membahas tentang Estimasi? Mungkin anda pernah mendengar kata Estimasi? Disini PakDosen membahas secara rinci tentang pengertian, jenis, ciri, metode dan contoh. Simak Penjelasan berikut secara seksama, jangan sampai ketinggalan. Estimasi merupakan suatu metode dimana kita dapat memperkirakan nilai Populasi dengan memakai nilai sampel. Misalnya rata-rata sampel digunakan untuk menaksir rata-rata pupolasi proporsi sampel untuk menaksir proporsi populasi p , dan jumlah ciri tertentu sampel untuk menaksir jumlah ciri tertentu populasi. Nilai penduga disebut dengan estimator, sedangkan hasil estimasi disebut dengan estimasi secara statistik. Jenis-jenis Estimasi Berikut ini adalah beberapa jenis-jenis estimasi yaitu 1. Estimasi Titik Titik estimasi merupakan salah satu cara untuk mengadakan estimasi terhadap parameter populasi yang tidak diketahui. Titik estimasi ialah nilai tunggal yang digunakan untuk mengadakan estimasi terhadap parameter populasi. Titik estimasi yang dapat digunakan untuk mengadakan estimasi parameter populasi ialah rata-rata sampel terhadap rata-rata populasi, proporsi sampel terhadap proporsi populasi, jumlah variabel tertentu yang terdapat dalam sampel untuk menaksir jumlah variabel tersebut dalam populasi, dan varians atau simpangan baku sampel untuk menaksir simpangan baku populasi. E µ = ; E 2 = S2 ; E p = 2. Estimasi Interval Dari penelitian dan perhitungan-perhitungan harga statistik suatu sampel, bisa dihitung suatu interval dimana dengan peluang tertentu harga parameter yang hendak ditaksir terletak dalam interval tersebut. Estimasi interval merupakan sekumpulan nilai statistik sampel dam interval tertentu yang digunakan untuk mengadakan estimasi terhadap parameter populasi dengan harapan bahwa nilai parameter populasi terletak dalam interval tersebut. Estimasi Rata – rata dalam statistik di asumsikan suatu ukuran sampel dikatakan besar apabila n ≥ 30, sampel dikatakan kecil apabila n ≤ 30. Estimasi rata-rata untuk sampel kecil n < 30, maka interval konfidensi untuk m adalah – t n-1 ; a/2 . S ≤ μ ≤ + t n-1 ; α/2 . S √n √n Ciri-ciri Estimasi Berikut ini adalah beberapa ciri-ciri estimasi yaitu Tidak bias Jika mean dari distribusi sampling suatu statistik sama dengan parameter populasi korespondensinya, maka statistik ini disebut sebagai estimator tak bias dari parameter tersebut. Kebalikannya, jika mean dari distribusi sampling suatu statistik tidak sama dengan parameter populasi korespondensinya, maka statistik ini disebut sebagai estimator bias dari parameter tersebut. Nilai-nilai korespondensi dari statistik-statistik ini msaing-masing disebut estimasi bias dan estimasi tak bias. Efisien Jika distribusi sampling dari dua statistik memiliki mean atau ekspektasi yang sama, maka statistik dengan varians yang lebih kecil disebut sebagai estimator efisien dari mean, sementara statistik yang lain disebut sebagai estimator tak efisien. Adapun nilai-nilai yang berkorespondensi dengan statistik-statistik ini masing-masing disebut sebagai estiamsi efisien dan estimasi tak efisien. Jika semua kemungkinan statistik yang distribusi samplingnya memiliki mean yang sama, maka statistik dengan varian terkecil terkadang disebut sebagai estimator paling efisien atau terbaik dari mean ini. Konsisten Bila besarnya sampel bertambah maka hampir dapat dipastikan bahwa nilai statistik sampel akan lebih mendekati nilai parameter populasi, estimator demikian disebut konsisten. Estimator konsisten adalah estimator yang cenderung sarna dengan nilai sebenarnya meskipun ukuran sampel semakin lama semakin besar. Dalam Kasus ini, apakah kita tahu bahwa nilai barn dari x akan lebih mendekati mean rata-rata Dari Atau ada kemungkinan lebih jauh? Estimator Yang konsisten adalah estimator yang akan bergerak mendekati nilai sebenarnya bila jumlah elemen sampel ditambah. Metode Klasifikasi Estimasi Pada umumnya, klasifikasi dan estimasi biaya yang lebih dapat diandalkan diperoleh dengan menggunakan pendekatan analisis biaya masa lalu, dengan beberapa metode yaitu 1. Metode Titik Tertinggi dan Titik Terendah High and Low Point Method Metode titik tertinggi dan titik terendah yaitu suatu metode pemisahan biaya campuran ke dalam elemen-elemen biaya tetap dan biaya variabelnya dengan mendasarkan analisis pada selisih biaya antara tingkat aktivitas tertinggi dan terendah. Maksud dari titik tertinggi dan terendah disini adalah titik tertinggi adalah suatu titik dengan tingkat output dan aktivitas tertinggi sedangkan titik terendah adalah titik dengan tingkat output dan aktivitas yang terendah. Secara umum perhitungan metode titik tertinggi dan terendah dapat dilakukan dengan cara Memilih jumlah biaya paling tinggi dari data yang tersedia. Memilih jumlah biaya paling rendah dari data yang tersedia. Menghitung selisih jumlah aktivitas dan selisih biaya dari dua titik tertinggi dan terendah. Memasukan selisih kedalam formula untuk menghitung komponen biaya tetap dan biaya variabel. 2. Metode Biaya Berjaga Stand By Cost Method Metode biaya berjaga digunakan untuk menaksir biaya tetap dan biaya variabel bila sebuah perusahaan menutup kegiatan usahanya untuk sementara. Metode ini disebut biaya berjaga karena untuk menghitung cadangan dana yang harus disiapkan untuk berjaga-jaga selama tenggang waktu tanpa kegiatan normal. Metode ini mencoba menghitung beberapa biaya yang harus tetap dikeluarkan andai kata perusahaan ditutup untuk sementara, jadi produknya sama dengan nol. Biaya ini disebut biaya terjaga, dan biaya terjaga ini merupakan bagian yang tetap. 3. Metode Kuadrat Terkecil Least-Square Method Pada umumnya metode kuadrat terkecil dimulai dari asumsi bahwa terdapat hubungan yang linier antara variabel terikat dan variabel bebas. Asumsi ini juga dapat diterapkan dalam analisis hubungan perilaku biaya dengan faktor yang menyebabkan terjadinya biaya yang bersangkutan. metode kuadrat terkecil juga membuat asumsi tentang sifat dan distribusi “eror term” dalam estimasi hubungan antara biaya overhead dan jam mesin. Atas dasar asumsi tersebut maka dianggap bahwa fluktuasi biaya sebagai variabel terikat y akan ditentukan secara linier oleh perubahan volume aktivitas x sebagai variabel bebasnya. Metode ini merupakan pengukuran dari jumlah biaya yang ada untuk mengetahui rata-rata biaya tetap dan rata-rata biaya variabel. Metode kuadrat terkecil untuk mengestimasi suatu hubungan linier didasarkan pada persamaan untuk sebuah garis lurus y = a + bx. Contoh Kasus Estimasi Tingkah Laku Biaya KOBEE adalah sebuah perusahaan yang memproduksi lampu, yang mempunyai data barang terjual dan biaya selama satu semester tahun 2017 sebagai berikut BULAN UNIT YANG TERJUAL BIAYA PENJUALAN JANUARI Rp FEBRUARI Rp MARET Rp APRIL Rp MEI Rp JUNI Rp Pertanyaan Tentukanlah persamaan garis linear dengan metode titik tertinggi dan titik terendah high and low point method jika dalam anggaran akhir tahun 2017 PT. KOBEE merencanakan menaikan penjualan sebesar unit yang terjual. Berapakah jumlah biaya penjualan yang harus dikeluarkan ? Tentukanlah persamaan garis linear dengan metode biaya terjaga stand by method, dengan biaya tetap fixed cost yang dikeluarkan sebesar Rp. per bulan. Jika perusahaan menaikan penjualan sebesar berapakah jumlah biaya penjualan total sales expence yang harus dikeluarkan oleh PT. KOBEE ? Tentukanlah persamaan garis linear dengan metode kuadrat terkecil least-square method jika perusahaan merencanakan menaikan unit yang terjual. Berapakah jumlah biaya penjualan yang harus dikeluarkan ? Jawaban Contoh Kasus 1. Metode High And Low Point Mencari biaya variabel b b = Y2-Y1 = – X2-X1 – = = 50 per unit yang terjual Mencari biaya tetap a a = Y2 ̶ bX2 = ̶ 50 = ̶ = Persamaan garis linear Y = a + b X , dimana a= biaya tetap, b= biaya variabel Y = + 50 X Kenaikan unit yang terjual sebesar maka Y = + 50 = Jadi, biaya penjualan yang dikeluarkan PT. KOBEE jika unit yang terjual dinaikan menjadi unit adalah sebesar Rp 2. Metode Berjaga-jaga Biaya yang dikeluarkan pada tingkat Rp Biaya tetap fixed cost Rp Selisih variance Rp Biaya variabel = Rp / = Rp 40 per unit yang terjual Persamaan garis linear Y = a + b X Y = + 40 X Kenaikan unit yang terjual sebesar maka Y = + 40 Y = Jadi, biaya penjualan yang dikeluarkan PT. KOBEE jika unit yang terjual dinaikan menjadi unit adalah sebesar Rp 3. Metode Least-Square BULAN UNIT X BIAYA PENJUALAN Y X2 XY JANUARI Rp Rp Rp FEBRUARI Rp Rp Rp MARET Rp Rp Rp APRIL Rp Rp Rp MEI Rp Rp Rp JUNI Rp Rp Rp Rp Rp Rp Demikian Penjelasan Materi Tentang Pengertian Estimasi Pengertian, Jenis, Ciri, Metode dan Contoh Semoga Materinya Bermanfaat Bagi Siswa-Siswi.
A. KartikaMahasiswa/Alumni Universitas Negeri Jakarta31 Januari 2022 1408Jawaban terverifikasiHalo Pratiwi, jawaban untuk pernyataan diatas adalah D. Range. Yuk, simak penjelasan berikut! Range rentang atau yang disebut juga dengan jangkauan adalah nilai data yang paling besar dan nilai data yang paling kecil. Jangkauan digunakan untuk menghitung selisih nilai tertinggi dan nilai terkecil dalam kelompok data tersebut. Terima kasih sudah bertanya dan menggunakan Roboguru, semoga membantu
Di dalam artikel ini kamu dapat menemukan 6 buah contoh soal matematika SMP dalam bentuk pilihan ganda tentang cara menentukan ukuran penyebaran data beserta soal ini sudah disesuaikan dengan materi ukuran penyebaran data yang terdapat dalam bab statistika yang diajarkan pada kelas 8 SMP semester 2 kurikulum adalah soal Soal 1Diketahui sekumpulan data sebagai berikut5 8 9 3 2 7 5 10 16 12 8 3 7 4 2 10 5Jangkauan dari data tersebut adalah…….A. 10B. 12C. 14D. 16PembahasanYang dimaksud dengan jangkauan data adalah selisih data tertinggi dengan dan data terendah atau secara matematika dapat ditulisJangkauan data J = data tertinggi - data terendahAgar dapat mencari nilai terendah dan tertinggi suatu data, maka data tersebut perlu diurutkan terlebih 2 3 34 5 5 5 7 7 8 8 9 10 10 12 16J = data tertinggi-data terendah = 16 - 2 = 14Kunci Jawaban CContoh Soal 2Tabel di bawah ini menunjukkan waktu yang diperoleh oleh peserta dalam suatu pertandingan lari jarak pendek. Q1, Q2 dan Q3 dari data di atas secara berturut-turut adalah…….A. 8,9 - 9,5 dan 10,5B. 8,95 - 9,5 dan 10,0C. 8,95 - 9,9 dan 10,5D. 8,9 - 10,0 dan 10,0PembahasanQ1, Q2 dan Q3 merupakan lambang untuk kuartil I, kuartil II dan kuartil III. Kuartil II merupakan nilai yang membagi data menjadi dua bagian sama besar. Artinya kuartil II = adanya kuartil I dan kuartil III pada data akan membuat data tersebut menjadi empat bagian sama x x x x x x x x x Q1 Q2 Q3Data pada tabel diatas jika dijabarkan menjadi8,5 8,9 8,9 8,9 8,9 9,0 9,0 9,2 9,5 9,5 9,5 9,9 9,9 9,9 9,9 10,1 10,1 10,1 10,1 10,1Sebelumnya kalian sudah belajar menentukan letak dari median yaitu menggunakan rumus= n+1/2Atau = ½ n+1Median atau Q2n = jumlah data = 20Median atau Q2 terletak pada = ½ n+1= ½ 20+1 = 10,5 atau terletak antara data ke 10 dan ke ke-10 = 9,5 Data ke-11 = 9,5 Median = ½ 9,5+9,5 = 9,5 = Q2Kuartil I/Kuartil bawah/Q1Q1 terletak di sebelah kiri Q2 median. Karena median membagi data menjadi dua bagian sama besar, maka di sebelah kiri dan kanan Q2 akan terdapat masing-masing 10 membagi 10 data di sebelah kiri median menjadi dua bagian sama besar. Untuk menentukan letak Q1/kuartil bawah digunakan rumus = ½ n+1 dengan n = terletak pada = ½ n+1 = ½ 10+1 = 5,5 artinya Q1 terletak antara data ke-5 dan ke-6Data ke-5 = 8,9Data ke-6 = 9,0Q1 = 8,9 + 9,0/2 = 8,95 Kuartil III/Kuartil atas/Q3Q3 terletak di sebelah kanan median. Di sebelah kanan median tentu juga ada 10 data dan Q3 membaginya menjadi dua bagian sama terletak pada ½ n+1 = ½ 10+1 = 5,5 Q3 terletak pada data ke 5 dan ke 6 setelah medianData ke-5 setelah median = 9,9Data ke-6 setelah median = 9,9Q3 = 10,1 + 9,9/2 = 10 Kadi, Q1, Q2 dan Q3-nya berturut-turut adalah 8,95 - 9,5 - 10Kunci Jawaban BContoh Soal 3Berikut ini adalah daftar nomor celana pria yang akan di stok oleh sebuah toko 34 35 32 26 29 29 29 32 2728 40 30 30 30 26 29 32 31 4033 35 32 40 26 28 27 30 38 30Kuartil bawah, kuartil atas dan jangkauan interkuartil dari data tersebut adalah…….A. 29, 34, 5B. 29, 35, 6C. 30, 29, 1D. 30, 35, 4PembahasanLangkah pertama sebelum mencari Q1 dan Q2, tentu data diatas harus diurutkan terlebih dahulu. Berikut adalah hasil setelah 26 26 27 27 28 28 29 29 2929 30 30 30 30 30 31 32 32 32 32 33 34 35 35 38 38 40 40 40Untuk mencari Q1 dan Q3, harus terlebih dahulu dicari Q2 atau median dari data = 30MedianTerletak pada n+1/2 = 30 +1/2 = 15,5 antara data ke-15 dan 16Data ke-15 = 30Data ke-16 = 30Median = 30Dikiri median, terdapat 15 buah data. Q1 adalah nilai tengah 15 data terletak pada ½ n+1 = ½ 15+1 = data ke-8 hitung dari kiri.Q1 = 29Di kanan median juga terdapat 15 buah data. Disinilah Q3 berada. Berarti Q3 juga berada di data ke-8 tetapi disebelah kanan = 34Jangkauan interkuartil adalah selisih antara kuartil atas dan kuartil bawah atau secara matematika dapat ditulis26 26 26 27 27 28 28 29Q1 29 2929 30 30 30 30 median/Q2 30 31 32 32 32 32 33 34Q3 35 35 38 38 40 40 40Jangkauan interkuartil JI = Q3 - Q1Jangkauan interkuartil data diatas adalah= 34 - 29= 5Kunci Jawaban AContoh Soal 4Tabel di bawah ini menunjukkan jarak rumah siswa kelas 8A dengan sekolah. Berdasarkan tabel diatas maka pernyataan berikut yang tidak benar adalah…….A. Q1 = 1,0B. Q2 = 2,0C. Jangkauan data = 2,5D. Jangkauan interkuartil = 1,0PembahasanPertama-tama, kita cek dahulu kebenaran option B yaitu Q2 = mediannya. Jumlah data = jumlah siswa = 25Q2 terletak pada n+1/2 = 25+1/2 = data ke 13Q2 = 2,0 option B benarQ1 merupakan nilai tengah 12 data disebelah kiri median. Q1 terletak pada n+1/2 = 12+1/2 = 6,5 antara data ke 6 dan ke 7Data ke 6 = 1,0Data ke 7 = 1,0Berarti, Q1 = 1,0 option A benarJangkauan data = data tertinggi - data terendah = 3,0 - 0,5 = 2,5 option C benar.Jangkauan interkuartil = Q3 - Q1Q3 juga terletak antara data ke 6 dan ke 7 disebelah kanan medianQ2.Data ke 6 = 2,5Data ke 7 = 2,5Q3 = 2,5JI = 2,5 - 1,0 = 1,5 option D salah.Kunci Jawaban DContoh Soal 5Perhatikan diagram berikut Diagram diatas menunjukkan nilai yang diperoleh oleh siswa kelas 8C saat mengikuti ujian mata pelajaran IPA. Berdasarkan diagram tersebut maka pernyataan di bawah ini adalah benar kecuali……..A. Kuartil atas = 6B. Median = 8C. Jangkauan interkuartil = 2,5D. Simpangan kuartil = 1,25PembahasanData pada grafik diatas dapat dijabarkan menjadi5 5 6 6 6 6 6 7 7 7 7 8 8 8 8 8 8 8 8 9 9 9 10 10 10 10 10 10Jumlah data = 28Q2 = ½ n+1 = ½ 28 + 1 = 14,5 diantara data ke 14 dan 15Q2 = 8 + 8/2 = 8 option B benar5 5 6 6 6 6 6 7 7 7 7 8 8 8 median 8 8 8 8 8 9 9 9 10 10 10 10 10 10Kuartil atas Q3= ½ 14 + 1 = 7,5 antara data 7 dan 8 disebelah kanan medianQ3 = 9 + 9/2 = 9 option A salah5 5 6 6 6 6 6 Q1 7 7 7 7 8 8 8 median 8 8 8 8 8 9 9 Q3 9 10 10 10 10 10 10Jangkauan interkuartil Q1 = ½ 14 + 1 = 7,5 antara data 7 dan 8Q1 = 6 + 7/2 = 6,5JI = Q3 - Q1 = 9 - 6,5 = 2,5 option C benarSimpangan kuartil = ½ jangkauan interkuartil = ½ x 2,5 = 1,25 option D benarKunci Jawaban AContoh Soal 6Median dari 12 buah data adalah 5 lebih lebihnya dari jangkauan. Jika semua data dikalikan 3 dan dikurangi 2 maka jumlah median dan jangkauan menjadi 34. Jangkauan data mula-mula adalah…….A. 3,5B. 7,0C. 7,5D. 12,0PembahasanMisalkan mula-mulaMedian = xData terendah = aData tertinggi = bJangkauan mula-mula = J1 = b - aMedian 12 data = 5 lebihnya dari jangkauan x = J1 + 5 ……..persamaan 1Kemudian semua data dikalikan 3 dan dikurangi 2, makaMedian = 3x - 2Data terendah = 3a - 2Data tertinggi = 3b - 2Jangkauan setelah datanya diubah= J2 = 3b - 2 - 3a - 2 = 3b - 3a = 3b-aSebelumnya kita dapatkan bahwa b - a = J1 jangkauan mula-mula.SehinggaJ2 = 3b - a = 3J1Setelah dilakukan perubahan pada datanya, median + jangkauan = 343x - 2 + J2 = 34 ganti J2 menjadi 3J13x - 2 + 3J1 = 343x - 2 + 3J1 = 343x + 3J1 = 34 + 23x + J1 = 36x + J1 = 36/3 x + J1 = 12 ……..persamaan 2Perhatikan persamaan 1 dan 2x = J1 + 5……..persamaan 1x + J1 = 12 ….. pernyataan 2Untuk mencari J1 atau jangkauan mula-mula, maka subtitusikan persamaan 1 ke persamaan + J1 = 2 ganti x menjadi J1 + 5J1 + 5 + J1 = 122J1 = 12 - 52J1 = 7J1 = 7/2 = 3,5Kunci Jawaban ANah, itulah 6 contoh soal matematika smp tentang cara menentukan ukuran penyebaran data beserta pembahasannya yang dapat saya bagikan pada artikel kali ini. Jika kalian menemukan kesalahan baik pada soal maupun pembahasan, kalian dapat mengoreksi dengan berkomentar pada kolom komentar dibawah ini. Terimakasih.
Ilustrasi cara menghitung nilai range. Foto ShutterstockDalam ilmu statistik, range atau jangkauan adalah perbedaan antara nilai tertinggi dan terendah dalam sebuah himpunan data. Dari nilai range yang diperoleh, dapat diketahui secara garis besar ukuran keragaman dari suatu buku Metode Statistika untuk Bisnis dan Ekonomi tulisan Dergibson Siagian dan Sugiarto, range merupakan ukuran variasi yang paling sederhana. Itulah mengapa range termasuk materi statistika yang mudah dihitung dan bagaimana cara menghitung nilai range? Berikut rumus beserta contoh soalnya yang dapat Menghitung Nilai RangeIlustrasi statistik. Foto PixabaySantosa dalam buku Statistika Hospitalitas menjelaskan, range dalam sebuah kelompok data menunjukkan kualitas data tersebut. Semakin kecil range, artinya data tersebut semakin yang bersifat heterogen cenderung memiliki range lebih besar daripada data yang bersifat homogen. Besarnya range sendiri mencakupRange persentil, yaitu nilai range pada ukuran-ukuran yang membagi data menjadi 100 bagian yang kuartil. Dalam suatu gugusan data terdapat tiga kuartil, yaitu kuartil 1 kuartil bawah, kuartil 2 kuartil tengah/median, dan kuartil 3 kuartil atas. Kuartil adalah nilai yang membagi sekumpulan data terurut menjadi empat bagian dengan jumlah kurang lebih sama. Range semi antarkuartil, yaitu setengah dari range dicari dengan melibatkan dua nilai, yaitu nilai terbesar atau tertinggi dan nilai terkecil atau terendah. Dijelaskan dalam buku Statistik Kesehatan Teori dan Aplikasi oleh I Made Sudarma Adiputra dkk. range dapat dibedakan menjadi dua, yaitu range data tunggal dan data menghitung nilai range dapat dilakukan menggunakan rumus berikutSementara itu, data berkelompok biasanya disajikan dalam bentuk tabel. Range data seperti ini bisa diperoleh dengan menghitung selisih nilai tengah atau tepi kelas. Tepi kelas terbagi menjadi dua, yakni tepi bawah dan tepi atas. Tepi bawah merupakan selisih batas bawah dengan nilai 0,5, sedangkan tepi atas merupakan penjumlahan dari batas atas dan nilai 0, SoalIlustrasi menghitung. Foto UnsplashAgar lebih memahaminya, simak contoh soal yang dikutip dari buku Dasar-Dasar Statistik Sosial karangan Muhammad Tanzil Aziz Rahimallah dkk. berikut ini1. Tentukan jangkauan data dari 1, 4, 7, 8, 9, 11!2. Tentukan range dari data berikut 4, 5, 7, 6, 11, Tentukan range dari data berikut 10, 10, 12, 15, 18, 204. Tentukan range dari data berikutXFrekuensi21-25516-20611-1586-1071-5aN30Kelas terendah adalah 1-5, maka titik tengah kelas terendah = 3Kelas tertinggi adalah 21-25, maka titik tengahnya = 23Tepi bawah kelas terendah = 0,5Tepi atas kelas tertinggi = 25,5Range berdasarkan titik tengah = 23 - 3 = 20Range berdasarkan tepi kelas = 25,5 - 0,5 = 255. Tentukan range dari data berikutSkor NilaiFrekuensi90-991680-891770-791560-69350-59240-493N56Kelas terendah adalah 40-49, maka titik tengahnya = 44,5Kelas tertinggi adalah 90-99, maka titik tengahnya = 94,5Tepi bawah kelas terendah = 39,5Tepi atas kelas tertinggi = 99,5Range berdasarkan titik tengah = 94,5 - 44,5 = 50Range berdasarkan tepi kelas = 99,5 - 39,5 = 60Apa yang dimaksud nilai range?Bagaimana cara menentukan nilai range?Apa itu kuartil?
selisih data tertinggi dan terendah